Fire Whirl Experimental Facility with No Enclosure of Solid Walls: Design and Validation

被引:0
|
作者
Pengfei Wang
Naian Liu
Linhe Zhang
Yueling Bai
Kohyu Satoh
机构
[1] University of Science and Technology of China,State Key Laboratory of Fire Science
来源
Fire Technology | 2015年 / 51卷
关键词
Fire whirl; Air curtain; Mass loss rate; Flame height; Flame temperature; Flame radiation;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, a fire whirl facility with no enclosure of solid walls was designed, for experimental simulation of fire whirls in open field. Air curtains were used to produce the generating eddy of fire whirl. Tests were conducted to evaluate the capability of the new facility. It was found that there was an optimal tilt angle for the air curtains to produce stable fire whirls. Experiments of fire whirls under different pool diameters showed that the mass loss rate m˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \dot{m} $$\end{document} depended on the circulation Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varGamma $$\end{document} by m˙∼Γ1.18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \dot{m}\sim \varGamma^{1.18} $$\end{document} and the dimensionless flame height satisfied H∗∼Γ∗0.71\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H^{*} \sim \varGamma^{*0.71} $$\end{document} (where the asterisks denote dimensionless variables). It was also found that the ratio of the continuous flame height to the whole flame height for different pool diameters was 0.67. The centerline temperatures varied with the normalized height Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Z $$\end{document} by Z0.08\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Z^{0.08} $$\end{document}, Z-1.30\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Z^{ - 1.30} $$\end{document} and Z-2.18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Z^{ - 2.18} $$\end{document}, respectively in the regions of the continuous flame, intermittent flame and plume. The radiative fraction was calculated to be close to 44%. All these results fit well with literature data, thereby the capability of the new facility for producing stable fire whirls was fully validated. Some potential applications of the new facility were discussed in detail. Especially, instruments such as infrared camera can be used to investigate the flame radiation of fire whirls by the new facility.
引用
收藏
页码:951 / 969
页数:18
相关论文
共 50 条
  • [1] Fire Whirl Experimental Facility with No Enclosure of Solid Walls: Design and Validation
    Wang, Pengfei
    Liu, Naian
    Zhang, Linhe
    Bai, Yueling
    Satoh, Kohyu
    FIRE TECHNOLOGY, 2015, 51 (04) : 951 - 969
  • [2] Numerical model and validation experiments of atrium enclosure fire in a new fire test facility
    Gutierrez-Montes, Candido
    Sanmiguel-Rojas, Enrique
    Kaiser, Antonio S.
    Viedma, Antonio
    BUILDING AND ENVIRONMENT, 2008, 43 (11) : 1912 - 1928
  • [3] Experimental Study on Flame Wander of Fire Whirl
    Wang, Pengfei
    Liu, Naian
    Liu, Xuanya
    Yuan, Xieshang
    FIRE TECHNOLOGY, 2018, 54 (05) : 1369 - 1381
  • [4] Experimental Investigation on the Variation in Solid Fuel Fire Whirl Properties with Imposed and Fuel Rotation
    Vishwakarma, Pushpendra Kumar
    Mishra, Kirti Bhushan
    Kumar, A. Aravind
    FIRE TECHNOLOGY, 2024, : 563 - 602
  • [5] Lifted flame in fire whirl: An experimental investigation
    Lei, Jiao
    Miao, Xuyang
    Liu, Zhihui
    Liu, Naian
    Zhang, Linhe
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2021, 38 (03) : 4595 - 4603
  • [6] An experimental study on thermal radiation of fire whirl
    Wang, Pengfei
    Liu, Naian
    Bai, Yueling
    Zhang, Linhe
    Satoh, Kohyu
    Liu, Xuanya
    INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2017, 26 (08) : 693 - 705
  • [7] Experimental Study on Flame Wander of Fire Whirl
    Pengfei Wang
    Naian Liu
    Xuanya Liu
    Xieshang Yuan
    Fire Technology, 2018, 54 : 1369 - 1381
  • [8] An experimental and numerical study of natural convection in an enclosure bounded by two composite solid walls
    Zalewski, L.
    Haddadi, H.
    Lassue, S.
    Duthoit, B.
    American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP, 2000, 414 : 49 - 55
  • [9] Experimental studies on characteristics of fire whirl in a vertical shaft
    Gao, Zheming
    Li, Shusheng
    Gao, Ye
    Chow, Wan Ki
    FIRE AND MATERIALS, 2019, 43 (03) : 229 - 240
  • [10] Experimental study on the vertical temperature distribution of window ejected fire from an enclosure with adjacent side walls
    Xu, Tong
    He, Qing
    Tang, Fei
    Lei, Peng
    Pang, Huanping
    FIRE AND MATERIALS, 2020, 44 (01) : 152 - 162