Approximate dual representation for Yang–Mills SU(2) gauge theory

被引:0
|
作者
R. Leme
O. Oliveira
G. Krein
机构
[1] Universidade Estadual Paulista,Instituto de Física Teórica
[2] Universidade Tecnológica Federal do Paraná (UTFPR-CP),CFisUC, Department of Physics
[3] University of Coimbra,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
An approximate dual representation for non-Abelian lattice gauge theories in terms of a new set of dynamical variables, the plaquette occupation numbers (PONs) that are natural numbers, is discussed. They are the expansion indices of the local series of the expansion of the Boltzmann factors for every plaquette of the Yang–Mills action. After studying the constraints due to gauge symmetry, the SU(2) gauge theory is solved using Monte Carlo simulations. For a PONs configuration the weight factor is given by Haar-measure integrals over all links whose integrands are products of powers of plaquettes. Herein, updates are limited to changes of the PON at a plaquette or all PONs on a coordinate plane. The Markov chain transition probabilities are computed employing truncated maximal trees and the Metropolis algorithm. The algorithm performance is investigated with different types of updates for the plaquette mean value over a large range of β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}s. Using a 124\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$12^4$$\end{document} lattice very good agreement with a conventional heath bath algorithm is found for the strong and weak coupling limits. Deviations from the latter being below 0.1% for 2.5<β<3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.5< \beta < 3$$\end{document}. The mass of the lightest JPC=0++\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^{PC}=0^{++}$$\end{document} glueball is evaluated and reproduces the results found in the literature.
引用
收藏
相关论文
共 50 条
  • [1] Approximate dual representation for Yang-Mills SU(2) gauge theory
    Leme, R.
    Oliveira, O.
    Krein, G.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (08):
  • [2] Type of dual superconductivity for the SU(2) Yang–Mills theory
    Shogo Nishino
    Kei-Ichi Kondo
    Akihiro Shibata
    Takaaki Sasago
    Seikou Kato
    [J]. The European Physical Journal C, 2019, 79
  • [3] Type of dual superconductivity for the SU(2) Yang-Mills theory
    Nishino, Shogo
    Kondo, Kei-ichi
    Shibata, Akihiro
    Sasago, Takaaki
    Kato, Seikou
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (09):
  • [4] Partially dual variables in SU(2) Yang-Mills theory
    Faddeev, L
    Niemi, AJ
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (08) : 1624 - 1627
  • [5] Towards a string representation of infrared SU(2) Yang-Mills theory
    Langmann, E
    Niemi, AJ
    [J]. PHYSICS LETTERS B, 1999, 463 (2-4) : 252 - 256
  • [6] Quark-confinement mechanism for SU(2) Yang–Mills theory in abelian gauge
    Kou Su-Peng
    [J]. The European Physical Journal C - Particles and Fields, 2001, 19 : 113 - 127
  • [7] SELF DUAL SOLUTIONS OF THE TEMPERATURE SU(2) YANG-MILLS THEORY
    ACTOR, A
    [J]. ANNALS OF PHYSICS, 1983, 148 (01) : 32 - 56
  • [8] Dual superconductors and SU(2) Yang-Mills
    Niemi, AJ
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2004, (08):
  • [9] A NEW QUANTUM REPRESENTATION FOR CANONICAL GRAVITY AND SU(2) YANG-MILLS THEORY
    LOLL, R
    [J]. NUCLEAR PHYSICS B, 1991, 350 (03) : 831 - 860
  • [10] Confining potential under the gauge field condensation in the SU(2) Yang-Mills theory
    Sawayanagi, Hirohumi
    [J]. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2021, 2021 (02):