Noise-Induced Drift in Stochastic Differential Equations with Arbitrary Friction and Diffusion in the Smoluchowski-Kramers Limit

被引:0
|
作者
Scott Hottovy
Giovanni Volpe
Jan Wehr
机构
[1] University of Arizona,Department of Mathematics and Program in Applied Mathematics
[2] Max-Planck-Institut für Intelligente Systeme,2. Physikalisches Institut
[3] Universität Stuttgart,Department of Physics
[4] Bilkent University,undefined
来源
Journal of Statistical Physics | 2012年 / 146卷
关键词
Brownian motion; Stochastic differential equations; Smoluchowski-Kramers approximation; Einstein mobility-diffusion relation;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the dynamics of systems with arbitrary friction and diffusion. These include, as a special case, systems for which friction and diffusion are connected by Einstein fluctuation-dissipation relation, e.g. Brownian motion. We study the limit where friction effects dominate the inertia, i.e. where the mass goes to zero (Smoluchowski-Kramers limit). Using the Itô stochastic integral convention, we show that the limiting effective Langevin equations has different drift fields depending on the relation between friction and diffusion. Alternatively, our results can be cast as different interpretations of stochastic integration in the limiting equation, which can be parametrized by α∈ℝ. Interestingly, in addition to the classical Itô (α=0), Stratonovich (α=0.5) and anti-Itô (α=1) integrals, we show that position-dependent α=α(x), and even stochastic integrals with α∉[0,1] arise. Our findings are supported by numerical simulations.
引用
收藏
页码:762 / 773
页数:11
相关论文
共 50 条