Fredholm Determinants and Pole-free Solutions to the Noncommutative Painlevé II Equation

被引:0
|
作者
M. Bertola
M. Cafasso
机构
[1] Université de Montréal,Centre de Recherches Mathématiques
[2] Concordia University,Department of Mathematics and Statistics
来源
关键词
Convolution Operator; Trace Class; Hilbert Problem; Resolvent Operator; Fredholm Determinant;
D O I
暂无
中图分类号
学科分类号
摘要
We extend the formalism of integrable operators à la Its-Izergin-Korepin-Slavnov to matrix-valued convolution operators on a semi–infinite interval and to matrix integral operators with a kernel of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{E_1^T(\lambda) E_2(\mu)}{\lambda+\mu}}$$\end{document}, thus proving that their resolvent operators can be expressed in terms of solutions of some specific Riemann-Hilbert problems. We also describe some applications, mainly to a noncommutative version of Painlevé II (recently introduced by Retakh and Rubtsov) and a related noncommutative equation of Painlevé type. We construct a particular family of solutions of the noncommutative Painlevé II that are pole-free (for real values of the variables) and hence analogous to the Hastings-McLeod solution of (commutative) Painlevé II. Such a solution plays the same role as its commutative counterpart relative to the Tracy–Widom theorem, but for the computation of the Fredholm determinant of a matrix version of the Airy kernel.
引用
收藏
页码:793 / 833
页数:40
相关论文
共 16 条