Rigid actions of amenable groups

被引:0
|
作者
Iddo Samet
机构
[1] Hebrew University,Institute of Mathematics
来源
关键词
Normal Subgroup; Measure Preserve; Cayley Graph; Free Action; Amenable Group;
D O I
暂无
中图分类号
学科分类号
摘要
Given a countable discrete amenable group G, does there exist a free action of G on a Lebesgue probability space which is both rigid and weakly mixing? The answer to this question is positive if G is abelian. An affirmative answer is given in this paper, in the case that G is solvable or residually finite. For a locally finite group, the question is reduced to an algebraic one. It is exemplified how the algebraic question can be positively resolved for some groups, whereas for others the algebraic viewpoint suggests the answer may be negative.
引用
收藏
页码:61 / 90
页数:29
相关论文
共 50 条
  • [1] Rigid actions of amenable groups
    Samet, Iddo
    ISRAEL JOURNAL OF MATHEMATICS, 2009, 173 (01) : 61 - 90
  • [2] AMENABLE ACTIONS OF GROUPS
    ADAMS, S
    ELLIOTT, GA
    GIORDANO, T
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 344 (02) : 803 - 822
  • [3] Amenable actions of nonamenable groups
    Grigorchuk R.
    Nekrashevych V.
    Journal of Mathematical Sciences, 2007, 140 (3) : 391 - 397
  • [4] Minimal models for actions of amenable groups
    Frej, Bartosz
    Huczek, Dawid
    GROUPS GEOMETRY AND DYNAMICS, 2017, 11 (02) : 567 - 583
  • [5] Amenable actions and exactness for discrete groups
    Ozawa, N
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (08): : 691 - 695
  • [6] Ergodic amenable actions of algebraic groups
    Raja, CRE
    GLASGOW MATHEMATICAL JOURNAL, 2004, 46 : 97 - 100
  • [7] AMENABLE ACTIONS OF DISCRETE-GROUPS
    ELLIOTT, GA
    GIORDANO, T
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1993, 13 : 289 - 318
  • [8] Bowen entropy for actions of amenable groups
    Zheng, Dongmei
    Chen, Ercai
    ISRAEL JOURNAL OF MATHEMATICS, 2016, 212 (02) : 895 - 911
  • [9] Bowen entropy for actions of amenable groups
    Dongmei Zheng
    Ercai Chen
    Israel Journal of Mathematics, 2016, 212 : 895 - 911
  • [10] Folner tilings for actions of amenable groups
    Conley, Clinton T.
    Jackson, Steve C.
    Kerr, David
    Marks, Andrew S.
    Seward, Brandon
    Tucker-Drob, Robin D.
    MATHEMATISCHE ANNALEN, 2018, 371 (1-2) : 663 - 683