An optimal theorem for the spherical maximal operator on the Heisenberg group

被引:0
|
作者
E. K. Narayanan
S. Thangavelu
机构
[1] Indian Institute of Science,Department of Mathematics
[2] Indian Statistical Institute,Stat
来源
关键词
Group Theory; Maximal Operator; Heisenberg Group; Surface Measure; Optimal Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Let\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{I}^n = \mathbb{C}^n \times \mathbb{R}$$ \end{document} be the Heisenberg group and μr be the normalized surface measure on the sphere of radiusr in ℂn. Let\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$Mf = \sup _{r > 0} \left| {f * \mu _r } \right|$$ \end{document}. We prove an optimalLp-boundedness result for the spherical maximal functionMf, namely we prove thatM is bounded onLp(In) if and only ifp>2n/2n−1.
引用
收藏
页码:211 / 219
页数:8
相关论文
共 50 条
  • [1] An optimal theorem for the spherical maximal operator on the Heisenberg group
    Narayanan, EK
    Thangavelu, S
    ISRAEL JOURNAL OF MATHEMATICS, 2004, 144 (2) : 211 - 219
  • [2] On the lacunary spherical maximal function on the Heisenberg group
    Ganguly, Pritam
    Thangavelu, Sundaram
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (03)
  • [3] On the maximal function associated to the spherical means on the Heisenberg group
    Bagchi, Sayan
    Hait, Sourav
    Roncal, Luz
    Thangavelu, Sundaram
    NEW YORK JOURNAL OF MATHEMATICS, 2021, 27 : 631 - 675
  • [4] SPHERICAL MEANS ON THE HEISENBERG GROUP: STABILITY OF A MAXIMAL FUNCTION ESTIMATE
    Anderson, Theresa C.
    Cladek, Laura
    Pramanik, Malabika
    Seeger, Andreas
    JOURNAL D ANALYSE MATHEMATIQUE, 2021, 145 (01): : 1 - 28
  • [5] Spherical means on the Heisenberg group: Stability of a maximal function estimate
    Theresa C. Anderson
    Laura Cladek
    Malabika Pramanik
    Andreas Seeger
    Journal d'Analyse Mathématique, 2021, 145 : 1 - 28
  • [6] Thuberian theorem for m-spherical transforms on the Heisenberg group
    Chang, Der-Chen
    Eby, Wayne M.
    MATHEMATISCHE NACHRICHTEN, 2007, 280 (08) : 815 - 837
  • [7] Boundedness of the fractional maximal operator in generalized Morrey space on the Heisenberg group
    Guliyev, V. S.
    Mammadov, Yagub Y.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2013, 44 (02): : 185 - 202
  • [8] Boundedness of the fractional maximal operator in generalized Morrey space on the Heisenberg group
    V. S. Guliyev
    Yagub Y. Mammadov
    Indian Journal of Pure and Applied Mathematics, 2013, 44 : 185 - 202
  • [9] FRACTIONAL MAXIMAL OPERATOR AND ITS COMMUTATORS IN GENERALIZED MORREY SPACES ON HEISENBERG GROUP
    Eroglu, Ahmet
    Azizov, Javanshir, V
    Guliyev, Vagif S.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2018, 44 (02): : 304 - 317
  • [10] A spectral multiplier theorem for Hardy spaces associated with Schrodinger operator on the Heisenberg group
    Hu, Nan
    Zhao, Jiman
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2022, 13 (01)