Boolean Dimension and Tree-Width

被引:0
|
作者
Stefan Felsner
Tamás Mészáros
Piotr Micek
机构
[1] Technische Universität Berlin,Faculty of Mathematics and Computer Science
[2] Freie Universität Berlin,undefined
[3] Jagiellonian University,undefined
来源
Combinatorica | 2020年 / 40卷
关键词
06A07; 05C35;
D O I
暂无
中图分类号
学科分类号
摘要
Dimension is a key measure of complexity of partially ordered sets. Small dimension allows succinct encoding. Indeed if P has dimension d, then to know whether x ≤ y in P it is enough to check whether x ≤ y in each of the d linear extensions of a witnessing realizer. Focusing on the encoding aspect, Nešetřil and Pudlák defined a more expressive version of dimension. A poset P has Boolean dimension at most d if it is possible to decide whether x ≤ y in P by looking at the relative position of x and y in only d linear orders on the elements of P (not necessarilly linear extensions). We prove that posets with cover graphs of bounded tree-width have bounded Boolean dimension. This stands in contrast with the fact that there are posets with cover graphs of tree-width three and arbitrarily large dimension. This result might be a step towards a resolution of the long-standing open problem: Do planar posets have bounded Boolean dimension?
引用
收藏
页码:655 / 677
页数:22
相关论文
共 50 条
  • [1] Boolean Dimension and Tree-Width
    Felsner, Stefan
    Meszaros, Tamas
    Micek, Piotr
    COMBINATORICA, 2020, 40 (05) : 655 - 677
  • [2] Tree-width and dimension
    Joret, Gwenael
    Micek, Piotr
    Milans, Kevin G.
    Trotter, William T.
    Walczak, Bartosz
    Wang, Ruidong
    COMBINATORICA, 2016, 36 (04) : 431 - 450
  • [3] Tree-width and dimension
    Gwenaël Joret
    Piotr Micek
    Kevin G. Milans
    William T. Trotter
    Bartosz Walczak
    Ruidong Wang
    Combinatorica, 2016, 36 : 431 - 450
  • [4] Tree-width dichotomy
    Lozin, Vadim
    Razgon, Igor
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 103
  • [5] The tree-width of C
    Krause, Philipp Klaus
    Larisch, Lukas
    Salfelder, Felix
    DISCRETE APPLIED MATHEMATICS, 2020, 278 (278) : 136 - 152
  • [6] Matroid tree-width
    Hlineny, Petr
    Whittle, Geoff
    EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (07) : 1117 - 1128
  • [7] Directed tree-width
    Johnson, T
    Robertson, N
    Seymour, PD
    Thomas, R
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 82 (01) : 138 - 154
  • [8] Connected Tree-Width
    Reinhard Diestel
    Malte Müller
    Combinatorica, 2018, 38 : 381 - 398
  • [9] Connected Tree-Width
    Diestel, Reinhard
    Mueller, Malte
    COMBINATORICA, 2018, 38 (02) : 381 - 398
  • [10] BOUNDED TREE-WIDTH AND LOGCFL
    WANKE, E
    JOURNAL OF ALGORITHMS, 1994, 16 (03) : 470 - 491