A Logarithmic Image Prior for Blind Deconvolution

被引:0
|
作者
Daniele Perrone
Paolo Favaro
机构
[1] University of Bern,Department of Computer Science and Applied Mathematics
来源
关键词
Blind deconvolution; Majorization–minimization; Primal-dual; Image prior; Total variation; Logarithmic prior;
D O I
暂无
中图分类号
学科分类号
摘要
Blind Deconvolution consists in the estimation of a sharp image and a blur kernel from an observed blurry image. Because the blur model admits several solutions it is necessary to devise an image prior that favors the true blur kernel and sharp image. Many successful image priors enforce the sparsity of the sharp image gradients. Ideally the L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0$$\end{document} “norm” is the best choice for promoting sparsity, but because it is computationally intractable, some methods have used a logarithmic approximation. In this work we also study a logarithmic image prior. We show empirically how well the prior suits the blind deconvolution problem. Our analysis confirms experimentally the hypothesis that a prior should not necessarily model natural image statistics to correctly estimate the blur kernel. Furthermore, we show that a simple Maximum a Posteriori formulation is enough to achieve state of the art results. To minimize such formulation we devise two iterative minimization algorithms that cope with the non-convexity of the logarithmic prior: one obtained via the primal-dual approach and one via majorization-minimization.
引用
收藏
页码:159 / 172
页数:13
相关论文
共 50 条
  • [1] A Logarithmic Image Prior for Blind Deconvolution
    Perrone, Daniele
    Favaro, Paolo
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2016, 117 (02) : 159 - 172
  • [2] Blind Image Deconvolution Using Variational Deep Image Prior
    Huo D.
    Masoumzadeh A.
    Kushol R.
    Yang Y.-H.
    [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (10) : 11472 - 11483
  • [3] Blind image deconvolution using the Fields of Experts prior
    Dong, Wende
    Feng, Huajun
    Xu, Zhihai
    Li, Qi
    [J]. OPTICS COMMUNICATIONS, 2012, 285 (24) : 5051 - 5061
  • [4] Blind Deconvolution via Lower-Bounded Logarithmic Image Priors
    Perrone, Daniele
    Diethelm, Remo
    Favaro, Paolo
    [J]. ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, EMMCVPR 2015, 2015, 8932 : 112 - 125
  • [5] Non-blind image deconvolution using natural image gradient prior
    Tao, Shuyin
    Dong, Wende
    Feng, Huajun
    Xu, Zhihai
    Li, Qi
    [J]. OPTIK, 2013, 124 (24): : 6599 - 6605
  • [6] Blind image deconvolution
    Kundur, D
    Hatzinakos, D
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 1996, 13 (03) : 43 - 64
  • [7] Blind Image Deconvolution via Cross-scale Low Rank Prior
    Peng T.-Q.
    Yu J.
    Xiao C.-B.
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (10): : 2508 - 2525
  • [8] A L0 sparse analysis prior for blind poissonian image deconvolution
    Gong, Xiaojin
    Lai, Baisheng
    Xiang, Zhiyu
    [J]. OPTICS EXPRESS, 2014, 22 (04): : 3860 - 3865
  • [9] Blind Image Deconvolution Using the Gaussian Scale Mixture Fields of Experts Prior
    Tao, Shuyin
    Dong, Wende
    Tang, Zhenmin
    Wang, Qiong
    [J]. PROCEEDINGS OF 2017 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC 2017), 2017, : 190 - 195
  • [10] Blind deconvolution of infrared image
    Zhong, S
    Shen, ZK
    [J]. MULTISPECTRAL AND HYPERSPECTRAL IMAGE ACQUISITION AND PROCESSING, 2001, 4548 : 275 - 279