Quasi-periodic solutions of the Heisenberg hierarchy

被引:0
|
作者
Zhu Li
Xianguo Geng
机构
[1] Xinyang Normal University,School of Mathematics and Statistics
[2] Zhengzhou University,School of Mathematics and Statistics
来源
Analysis and Mathematical Physics | 2021年 / 11卷
关键词
The Heisenberg hierarchy; Hyperelliptic curve; Quasi-periodic solutions;
D O I
暂无
中图分类号
学科分类号
摘要
The Heisenberg hierarchy and its Hamiltonian structure are obtained respectively by use of the zero curvature equation and the trace identity. With the help of the Lax matrix we introduce an algebraic curve Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}_{n}$$\end{document} of arithmetic genus n, from which we define meromorphic function ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} and straighten out all of the flows associated with the Heisenberg hierarchy under the Abel–Jacobi coordinates. Finally, we get the explicit theta function representations of solutions for the whole Heisenberg hierarchy as a result of the asymptotic properties of ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Quasi-periodic solutions of the Heisenberg hierarchy
    Li, Zhu
    Geng, Xianguo
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)
  • [2] Quasi-Periodic Solutions of the Universal Hierarchy
    Krichever, I.
    Zabrodin, A.
    ANNALES HENRI POINCARE, 2024,
  • [3] QUASI-PERIODIC SOLUTIONS OF THE DISCRETE mKdV HIERARCHY
    Geng, Xianguo
    Gong, Dong
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (03)
  • [4] Quasi-periodic Solutions of the Kaup–Kupershmidt Hierarchy
    Xianguo Geng
    Lihua Wu
    Guoliang He
    Journal of Nonlinear Science, 2013, 23 : 527 - 555
  • [5] Quasi-Periodic Solutions of the Relativistic Toda Hierarchy
    Dong Gong
    Xianguo Geng
    Journal of Nonlinear Mathematical Physics, 2012, 19 : 489 - 523
  • [6] QUASI-PERIODIC SOLUTIONS OF THE RELATIVISTIC TODA HIERARCHY
    Gong, Dong
    Geng, Xianguo
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2012, 19 (04) : 489 - 523
  • [7] Quasi-periodic Solutions to the K(-2,-2) Hierarchy
    Wu, Lihua
    Geng, Xianguo
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (07): : 639 - 645
  • [8] A note on the quasi-periodic solutions of the modified Boussinesq hierarchy
    Wu, Lihua
    He, Guoliang
    Geng, Xianguo
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 96 : 133 - 145
  • [9] Quasi-periodic Solutions of the Kaup-Kupershmidt Hierarchy
    Geng, Xianguo
    Wu, Lihua
    He, Guoliang
    JOURNAL OF NONLINEAR SCIENCE, 2013, 23 (04) : 527 - 555
  • [10] Quasi-periodic solutions for an extension of AKNS hierarchy and their reductions
    Qin, ZY
    CHAOS SOLITONS & FRACTALS, 2005, 25 (03) : 585 - 599