Effect of the quartic gradient terms on the critical exponents of the Wilson-Fisher fixed point in O(N) models

被引:0
|
作者
Zoltán Péli
Sándor Nagy
Kornel Sailer
机构
[1] University of Debrecen,Department of Theoretical Physics
来源
The European Physical Journal A | 2018年 / 54卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The effect of the 𝒪(∂4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(\partial^{4})$\end{document} terms of the gradient expansion on the anomalous dimension η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \eta$\end{document} and the correlation length’s critical exponent ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \nu$\end{document} of the Wilson-Fisher fixed point has been determined for the Euclidean 3-dimensional O(N) models with N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ N\ge 2$\end{document} . Wetterich’s effective average action renormalization group method is used with field-independent derivative couplings and Litim’s optimized regulator. It is shown that the critical theory is well approximated by the effective average action preserving O(N) symmetry with an accuracy of 𝒪(η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(\eta)$\end{document}.
引用
收藏
相关论文
共 36 条
  • [1] Effect of the quartic gradient terms on the critical exponents of the Wilson-Fisher fixed point in O(N) models
    Peli, Zoltan
    Nagy, Sandor
    Sailer, Kornel
    EUROPEAN PHYSICAL JOURNAL A, 2018, 54 (02):
  • [2] Subleading conformal dimensions at the O(4) Wilson-Fisher fixed point
    Banerjee, Debasish
    Chandrasekharan, Shailesh
    PHYSICAL REVIEW D, 2022, 105 (03)
  • [3] Revisiting the dilatation operator of the Wilson-Fisher fixed point
    Liendo, Pedro
    NUCLEAR PHYSICS B, 2017, 920 : 368 - 384
  • [4] Unitarity violation at the Wilson-Fisher fixed point in 4-ε dimensions
    Hogervorst, Matthijs
    Rychkov, Slava
    van Rees, Balt C.
    PHYSICAL REVIEW D, 2016, 93 (12)
  • [5] Conformal Dimensions in the Large Charge Sectors at the O(4) Wilson-Fisher Fixed Point
    Banerjee, Debasish
    Chandrasekharan, Shailesh
    Orlando, Domenico
    Reffert, Susanne
    PHYSICAL REVIEW LETTERS, 2019, 123 (05)
  • [6] The fate of the Wilson-Fisher fixed point in non-commutative φ4
    Ydri, Badis
    Bouchareb, Adel
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (10)
  • [7] Leading order anomalous dimensions at the Wilson-Fisher fixed point from CFT
    Roumpedakis, Konstantinos
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (07):
  • [8] Leading order anomalous dimensions at the Wilson-Fisher fixed point from CFT
    Konstantinos Roumpedakis
    Journal of High Energy Physics, 2017
  • [9] The large charge limit of scalar field theories, and the Wilson-Fisher fixed point at ε=0
    Arias-Tamargo, G.
    Rodriguez-Gomez, D.
    Russo, J. G.
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (10)
  • [10] The large charge limit of scalar field theories, and the Wilson-Fisher fixed point at 𝜖 = 0
    G. Arias-Tamargo
    D. Rodriguez-Gomez
    J.G. Russo
    Journal of High Energy Physics, 2019