Boussinesq Systems of Bona-Smith Type on Plane Domains: Theory and Numerical Analysis

被引:0
|
作者
V. A. Dougalis
D. E. Mitsotakis
J.-C. Saut
机构
[1] University of Athens,Department of Mathematics
[2] Institute of Applied and Computational Mathematics FO.R.T.H.,UMR de Mathématiques
[3] Université de Paris-Sud,undefined
来源
关键词
Boussinesq systems; Nonlinear dispersive wave equations; Initial-boundary-value problems; Galerkin-finite element methods for Boussinesq systems;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a class of Boussinesq systems of Bona-Smith type in two space dimensions approximating surface wave flows modelled by the three-dimensional Euler equations. We show that various initial-boundary-value problems for these systems, posed on a bounded plane domain are well posed locally in time. In the case of reflective boundary conditions, the systems are discretized by a modified Galerkin method which is proved to converge in L2 at an optimal rate. Numerical experiments are presented with the aim of simulating two-dimensional surface waves in realistic (plane) domains with a variety of initial and boundary conditions, and comparing numerical solutions of Bona-Smith systems with analogous solutions of the BBM-BBM system.
引用
收藏
页码:109 / 135
页数:26
相关论文
共 50 条
  • [1] Boussinesq Systems of Bona-Smith Type on Plane Domains: Theory and Numerical Analysis
    Dougalis, V. A.
    Mitsotakis, D. E.
    Saut, J. -C.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2010, 44 (02) : 109 - 135
  • [2] Numerical solution of Boussinesq systems of the Bona-Smith family
    Antonopoulos, D. C.
    Dougalis, V. A.
    Mitsotakis, D. E.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2010, 60 (04) : 314 - 336
  • [3] A numerical study of the stability of solitary waves of the Bona-Smith family of Boussinesq systems
    Dougalis, V. A.
    Duran, A.
    Lopez-Marcos, M. A.
    Mitsotakis, D. E.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2007, 17 (06) : 569 - 607
  • [4] INITIAL-BOUNDARY-VALUE PROBLEMS FOR THE BONA-SMITH FAMILY OF BOUSSINESQ SYSTEMS
    Antonopoulos, D. C.
    Dougalis, V. A.
    Mitsotakis, D. E.
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2009, 14 (1-2) : 27 - 53
  • [5] Quintic B-spline collocation method for the numerical solution of the Bona-Smith family of Boussinesq equation type
    Ren, Jianguo
    Manafian, Jalil
    Shallal, Muhannad A.
    Jabbar, Hawraz N.
    Mohammed, Sizar A.
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2022, 23 (01) : 135 - 148
  • [6] Initial-boundary-value problems for the Bona-Smith family of Boussinesq systems (vol 14 , pg 27, 2009)
    Antonopoulos, D. C.
    Dougalis, V. A.
    Mitsotakis, D. E.
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2009, 14 (9-10) : 1019 - 1019
  • [7] A Numerical Study of the Stability of Solitary Waves of the Bona–Smith Family of Boussinesq Systems
    V. A. Dougalis
    A. Durán
    M. A. López-Marcos
    D. E. Mitsotakis
    [J]. Journal of Nonlinear Science, 2007, 17 : 569 - 607
  • [8] On some Boussinesq systems in two space dimensions: Theory and numerical analysis
    Dougalis, Vassilios A.
    Mitsotakis, Dimitrios E.
    Saut, Jean-Claude
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2007, 41 (05): : 825 - 854
  • [9] Extended water wave systems of Boussinesq equations on a finite interval: Theory and numerical analysis
    Mantzavinos, Dionyssios
    Mitsotakis, Dimitrios
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 169 : 109 - 137
  • [10] ON THE THEORY OF ELLIPTIC-SYSTEMS IN MULTIPLY CONNECTED DOMAINS ON PLANE
    DZHURAYEV, A
    [J]. DOKLADY AKADEMII NAUK SSSR, 1991, 317 (06): : 1294 - 1297