Lower Bounds of Distance Laplacian Spectral Radii of n-Vertex Graphs in Terms of Fractional Matching Number

被引:0
|
作者
Jin Yan
Yan Liu
Xue-Li Su
机构
[1] South China Normal University,School of Mathematical Sciences
关键词
Distance Laplacian; Spectral radius; Fractional matching number; 05C50; 05C72;
D O I
暂无
中图分类号
学科分类号
摘要
A fractional matching of a graph G is a function f: E(G)→[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(G)\rightarrow [0, 1]$$\end{document} such that for each vertex v, ∑eϵΓG(v)f(e)61\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum \nolimits _{e \epsilon \Gamma _G (v)}f(e)\hbox {\,\,\char 054\,\,}1$$\end{document}. The fractional matching number of G is the maximum value of ∑e∈E(G)f(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{e\in E(G)}f(e)$$\end{document} over all fractional matchings f. Tian et al. (Linear Algebra Appl 506:579–587, 2016) determined the extremal graphs with minimum distance Laplacian spectral radius among n-vertex graphs with given matching number. However, a natural problem is left open: among all n-vertex graphs with given fractional matching number, how about the lower bound of their distance Laplacian spectral radii and which graphs minimize the distance Laplacian spectral radii? In this paper, we solve these problems completely.
引用
收藏
页码:189 / 196
页数:7
相关论文
共 50 条
  • [1] Lower Bounds of Distance Laplacian Spectral Radii of n-Vertex Graphs in Terms of Fractional Matching Number
    Yan, Jin
    Liu, Yan
    Su, Xue-Li
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2023, 11 (01) : 189 - 196
  • [2] Lower bounds of distance Laplacian spectral radii of n-vertex graphs in terms of matching number
    Tian, Fenglei
    Wong, Dein
    Ma, Xiaobin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 506 : 579 - 587
  • [3] ORDERING n-VERTEX CACTI WITH MATCHING NUMBER q BY THEIR SPECTRAL RADII
    Hou, Ailin
    Li, Shuchao
    QUAESTIONES MATHEMATICAE, 2014, 37 (03) : 401 - 414
  • [4] A Lower Bound for the Distance Signless Laplacian Spectral Radius of Graphs in Terms of Chromatic Number
    Xiaoxin LI
    Yizheng FAN
    Shuping ZHA
    JournalofMathematicalResearchwithApplications, 2014, 34 (03) : 289 - 294
  • [5] Bounds on the distance signless Laplacian spectral radius in terms of clique number
    Lin, Huiqiu
    Lu, Xiwen
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (09): : 1750 - 1759
  • [6] Sharp bounds on the signless Laplacian spectral radii of graphs
    Yu, Guanglong
    Wu, Yarong
    Shu, Jinlong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (03) : 683 - 687
  • [7] On the Distance and Distance Signless Laplacian Spectral Radii of Tricyclic Graphs
    Zhongxun Zhu
    Xin Zou
    Yunchao Hong
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2587 - 2604
  • [8] On the Distance and Distance Signless Laplacian Spectral Radii of Tricyclic Graphs
    Zhu, Zhongxun
    Zou, Xin
    Hong, Yunchao
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (03) : 2587 - 2604
  • [9] Upper bounds for bar visibility of subgraphs and n-vertex graphs
    Feng, Yuanrui
    West, Douglas B.
    Yang, Yan
    DISCRETE APPLIED MATHEMATICS, 2020, 283 : 272 - 274
  • [10] On the distance and distance signless Laplacian spectral radii of bicyclic graphs
    Xing, Rundan
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (12) : 3955 - 3963