A note on invariant sets of iterated function systems

被引:0
|
作者
L. L. Stachó
L. I. Szabó
机构
[1] University of Szeged,Bolyai Institute
来源
Acta Mathematica Hungarica | 2008年 / 119卷
关键词
iterated function system; fractal; invariant set; weak contraction; 49F20;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the family of all invariant sets of iterated systems of contractions RN → RN is a nowhere dense Fσ type subset in the space of the nonempty compact subsets of RN equipped with the Hausdorff metric.
引用
收藏
页码:159 / 164
页数:5
相关论文
共 50 条
  • [1] A note on invariant sets of iterated function systems
    Stacho, L. L.
    Szabo, L. I.
    ACTA MATHEMATICA HUNGARICA, 2008, 119 (1-2) : 159 - 164
  • [2] The Box-counting Dimension of Invariant Sets for Iterated Function Systems
    Geng Xiangyi (Department of Computer Sciences
    Communications in Mathematical Research, 1999, (01) : 59 - 64
  • [3] A NOTE ON SPECIFICATION FOR ITERATED FUNCTION SYSTEMS
    Cordeiro, Welington
    Denker, Manfred
    Yuri, Michiko
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (10): : 3475 - 3485
  • [4] Invariant measures for iterated function systems with inverses
    Takahashi, Yuki
    JOURNAL OF FRACTAL GEOMETRY, 2022, 9 (1-2) : 129 - 149
  • [5] Chaotic sets on attractors of iterated function systems
    Ma, Dong-Kui
    Hu, Chao-Jie
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2009, 37 (07): : 138 - 141
  • [6] ON CUT SETS OF ATTRACTORS OF ITERATED FUNCTION SYSTEMS
    Loridant, Benoit
    Luo, Jun
    Sellami, Tarek
    Thuswaldner, Joerg M.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (10) : 4341 - 4356
  • [7] A note on iterated function systems with discontinuous probabilities
    Jaroszewska, Joanna
    CHAOS SOLITONS & FRACTALS, 2013, 49 : 28 - 31
  • [8] Invariant idempotent ⁎-measures generated by iterated function systems
    Mazurenko, Natalia
    Sukhorukova, Khrystyna
    Zarichnyi, Mykhailo
    Fuzzy Sets and Systems, 2025, 498
  • [9] On natural invariant measures on generalised iterated function systems
    Käenmäki, A
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2004, 29 (02) : 419 - 458
  • [10] DIMENSION OF INVARIANT MEASURES FOR AFFINE ITERATED FUNCTION SYSTEMS
    Feng, De-Jun
    DUKE MATHEMATICAL JOURNAL, 2023, 172 (04) : 701 - 774