Compactness criteria and new impulsive functional dynamic equations on time scales

被引:0
|
作者
Chao Wang
Ravi P Agarwal
Donal O’Regan
机构
[1] Yunnan University,Department of Mathematics
[2] Texas A&M University-Kingsville,Department of Mathematics
[3] National University of Ireland,School of Mathematics, Statistics and Applied Mathematics
关键词
relatively compact; existence; impulsive functional dynamic equations; almost periodic time scales; 34N05; 34A37; 39A24; 46B50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the concept of Δ-sub-derivative on time scales to define ε-equivalent impulsive functional dynamic equations on almost periodic time scales. To obtain the existence of solutions for this type of dynamic equation, we establish some new theorems to characterize the compact sets in regulated function space on noncompact intervals of time scales. Also, by introducing and studying a square bracket function [x(⋅),y(⋅)]:T→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[x(\cdot),y(\cdot) ]:\mathbb{T}\rightarrow\mathbb{R}$\end{document} on time scales, we establish some new sufficient conditions for the existence of almost periodic solutions for ε-equivalent impulsive functional dynamic equations on almost periodic time scales. The final section presents our conclusion and further discussion of this topic.
引用
收藏
相关论文
共 50 条
  • [1] Compactness criteria and new impulsive functional dynamic equations on time scales
    Wang, Chao
    Agarwal, Ravi P.
    O'Regan, Donal
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [2] Impulsive functional dynamic equations on time scales
    Benchohra, M
    Henderson, J
    Ntouyas, SK
    Ouahab, A
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2006, 15 (01): : 43 - 52
  • [3] OSCILLATION CRITERIA FOR IMPULSIVE DYNAMIC EQUATIONS ON TIME SCALES
    Huang, Mugen
    Feng, Weizhen
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
  • [4] Extremal solutions for nonresonance impulsive functional dynamic equations on time scales
    Graef, John R.
    Ouahab, Abdelghani
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 196 (01) : 333 - 339
  • [5] Oscillation Criteria For Second-order Impulsive Dynamic Equations On Time Scales
    Li, Qiaoluan
    Zhou, Lina
    [J]. APPLIED MATHEMATICS E-NOTES, 2011, 11 : 33 - 40
  • [6] Continuous dependence for impulsive functional dynamic equations involving variable time scales
    Bohner, Martin
    Federson, Marcia
    Mesquita, Jaqueline Godoy
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 221 : 383 - 393
  • [7] Oscillation criteria for nonlinear neutral functional dynamic equations on time scales
    Kubiaczyk, I.
    Saker, S. H.
    Sikorska-Nowak, A.
    [J]. MATHEMATICA SLOVACA, 2013, 63 (02) : 263 - 290
  • [8] Oscillation criteria for nonlinear functional neutral dynamic equations on time scales
    Erbe, Lynn
    Hassan, Taher S.
    Peterson, Allan
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2009, 15 (11-12) : 1097 - 1116
  • [9] Asymptotic equivalence of impulsive dynamic equations on time scales
    Akgol, Sibel Dogru
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (02): : 277 - 291
  • [10] OSCILLATION OF SOLUTIONS TO IMPULSIVE DYNAMIC EQUATIONS ON TIME SCALES
    Li, Qiaoluan
    Guo, Fang
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2009,