Unitarily invariant norm inequalities for functions of accretive-dissipative 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} block matrices

被引:0
|
作者
Amel Bourahli
Omar Hirzallah
Fuad Kittaneh
机构
[1] The University of Jordan,Department of Mathematics
[2] The Hashemite University,Department of Mathematics
关键词
Accretive-dissipative matrix; Concave function; Convex function; Contraction; Schatten ; -norm; Singular value; Unitarily invariant norm; 15A18; 15A60; 47A30; 47B15;
D O I
10.1007/s11117-020-00770-w
中图分类号
学科分类号
摘要
Let T11,T12,T21,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{11},T_{12},T_{21},$$\end{document} and T22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{22}$$\end{document} be n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} complex matrices, T=T11T12T21T22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ T=\left( \begin{array}{cc} T_{11} &{} T_{12} \\ T_{21} &{} T_{22} \end{array} \right) $$\end{document} be accretive-dissipative, γ∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \in (0,1]$$\end{document}, r≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 2,\ $$\end{document}and let α,β∈[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha ,\beta \in [0,1]$$\end{document} such that α+β=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha +\beta =1$$\end{document}. If f is an increasing convex function on [0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\infty )$$\end{document} such that f(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(0)=0$$\end{document}, then fT12+2α-1T21∗r+f2rαr/2βr/2T21∗r≤γfTrγr/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left| \left| \left| f\left( \left| T_{12}+\left( 2\alpha -1\right) T_{21}^{*}\right| ^{r}\right) +f\left( 2^{r}\alpha ^{r/2}\beta ^{r/2}\left| T_{21}^{*}\right| ^{r}\right) \right| \right| \right| \le \gamma \left| \left| \left| f\left( \frac{\left| T\right| ^{r}}{\gamma ^{r/2}}\right) \right| \right| \right| \end{aligned}$$\end{document}for every unitarily invariant norm. In addition, if T is contraction and f is submultiplicative, then fT12+2α-1T21∗2+f4αβT21∗2≤f22frT111/21/rfsT221/21/s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&\left| \left| \left| \left( f\left( \left| T_{12}+\left( 2\alpha -1\right) T_{21}^{*}\right| ^{2}\right) +f\left( 4\alpha \beta \left| T_{21}^{*}\right| ^{2}\right) \right) \right| \right| \right| \\&\quad \le f^{2}\left( \sqrt{2}\right) \left| \left| \left| f^{r}\left( \left| T_{11}\right| ^{1/2}\right) \right| \right| \right| ^{1/r}\left| \left| \left| f^{s}\left( \left| T_{22}\right| ^{1/2}\right) \right| \right| \right| ^{1/s} \end{aligned}$$\end{document}for every unitarily invariant norm and for every positive real numbers r, s with 1r+1s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{r}+\frac{1}{s}=1$$\end{document}. Related inequalities for concave functions are also given.
引用
收藏
页码:447 / 467
页数:20
相关论文
共 50 条