In this paper we analyze the discretization of optimal control problems governed by convection-diffusion equations which are subject to pointwise control constraints. We present a stabilization scheme which leads to improved approximate solutions even on corse meshes in the convection dominated case. Moreover, the in general different approaches “optimize-then- discretize” and “discretize-then-optimize” coincide for the proposed discretization scheme. This allows for a symmetric optimality system at the discrete level and optimal order of convergence.
机构:
Nanjing Normal Univ, Jiangsu Key Lab NSLSCS, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Jiangsu Key Lab NSLSCS, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
Zhang, Qian
Zhang, Zhiyue
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Jiangsu Key Lab NSLSCS, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Jiangsu Key Lab NSLSCS, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
机构:
Univ Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
IMAS CONICET, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
Duran, R. G.
Lombardi, A. L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, Dept Matemat, FCEyN, RA-1613 Los Polvorines, Buenos Aires, Argentina
Univ Nacl Gen Sarmiento, Inst Ciencias, RA-1613 Los Polvorines, Buenos Aires, ArgentinaUniv Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
Lombardi, A. L.
Prieto, M. I.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina