Nondegenerate solutions for constrained semilinear elliptic problems on Riemannian manifolds

被引:0
|
作者
Gustavo de Paula Ramos
机构
[1] Universidade de São Paulo,Instituto de Matemática e Estatística
关键词
Nondegenerate critical points; Generic result; Singular perturbation; Semilinear elliptic equation; Primary 58E05; Secondary 35J20;
D O I
暂无
中图分类号
学科分类号
摘要
Let Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^n$$\end{document} be a connected compact smooth manifold, where n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document}. In this article, we prove that nondegeneracy of nonconstant solutions for a class of singularly perturbed semilinear elliptic problems on M is generic with respect to the pair (ϵ,g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\epsilon ,g)$$\end{document}, where ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document} and g is a metric of class Ck\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^k$$\end{document}, k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}. As applications, we show that under certain growth conditions, such result generalizes to nondegeneracy of any solution for the Allen-Cahn or nonlinear Schrödinger equations.
引用
收藏
相关论文
共 50 条