Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon

被引:0
|
作者
Eunjin Oh
Hee-Kap Ahn
机构
[1] Max Planck Institute for Informatics,Department of Computer Science and Engineering
[2] POSTECH,undefined
来源
关键词
Voronoi diagrams; Geodesic distance; Simple Polygons; 65D18;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set of sites in a simple polygon, a geodesic Voronoi diagram of the sites partitions the polygon into regions based on distances to sites under the geodesic metric. We present algorithms for computing the geodesic nearest-point, higher-order and farthest-point Voronoi diagrams of m point sites in a simple n-gon, which improve the best known ones for m≤n/polylogn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \le n/{\text {polylog}}n$$\end{document}. Moreover, the algorithms for the geodesic nearest-point and farthest-point Voronoi diagrams are optimal for m≤n/polylogn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \le n/{\text {polylog}}n$$\end{document}. This partially answers a question posed by Mitchell in the Handbook of Computational Geometry.
引用
收藏
页码:418 / 454
页数:36
相关论文
共 17 条
  • [1] Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon
    Oh, Eunjin
    Ahn, Hee-Kap
    DISCRETE & COMPUTATIONAL GEOMETRY, 2020, 63 (02) : 418 - 454
  • [2] A parallel algorithm for constructing Voronoi diagrams based on point-set adaptive grouping
    Wang, Jiechen
    Cui, Can
    Rui, Yikang
    Cheng, Liang
    Pu, Yingxia
    Wu, Wenzhou
    Yuan, Zhenyu
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2014, 26 (02): : 434 - 446
  • [3] KINETIC GEODESIC VORONOI DIAGRAMS IN A SIMPLE POLYGON
    Korman, Matias
    Van Renssen, Andre
    Roeloffzen, Marcel
    Staals, Frank
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (04) : 2276 - 2311
  • [4] OPTIMAL PARALLEL ALGORITHMS FOR POINT-SET AND POLYGON PROBLEMS
    COLE, R
    GOODRICH, MT
    ALGORITHMICA, 1992, 7 (01) : 3 - 23
  • [5] ON THE GEODESIC VORONOI DIAGRAM OF POINT SITES IN A SIMPLE POLYGON
    ARONOV, B
    ALGORITHMICA, 1989, 4 (01) : 109 - 140
  • [6] The Geodesic Farthest-Point Voronoi Diagram in a Simple Polygon
    Oh, Eunjin
    Barba, Luis
    Ahn, Hee-Kap
    ALGORITHMICA, 2020, 82 (05) : 1434 - 1473
  • [7] The Geodesic Farthest-Point Voronoi Diagram in a Simple Polygon
    Eunjin Oh
    Luis Barba
    Hee-Kap Ahn
    Algorithmica, 2020, 82 : 1434 - 1473
  • [8] On tinding an empty staircase polygon of largest area (width) in a planar point-set
    Nandy, SC
    Bhattacharya, BB
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2003, 26 (02): : 143 - 171
  • [9] An algorithm for generating Voronoi diagram of 3D scattered point-set
    Sun, Dianzhu
    Liu, Jian
    Li, Yanrui
    Li, Xincheng
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2010, 35 (08): : 909 - 912
  • [10] Test of a simple empirical Green's function method on moderate-sized earthquakes
    Bour, M
    Cara, M
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 1997, 87 (03) : 668 - 683