2-Distance paired-dominating number of graphs

被引:0
|
作者
Kan Yu
Mei Lu
机构
[1] Tsinghua University,Department of Mathematical Sciences
来源
关键词
Graph; 2-Distance paired-dominating number; Degree ; Girth;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} be a simple graph without isolated vertices. For a positive integer \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}, a subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(G)$$\end{document} is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-distance paired-dominating set if each vertex in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\setminus {D}$$\end{document} is within distance \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} of a vertex in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} and the subgraph induced by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} contains a perfect matching. In this paper, we give some upper bounds on the 2-distance paired-dominating number in terms of the minimum and maximum degree, girth, and order.
引用
收藏
页码:827 / 836
页数:9
相关论文
共 50 条
  • [1] 2-Distance paired-dominating number of graphs
    Yu, Kan
    Lu, Mei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 28 (04) : 827 - 836
  • [2] Graphs with disjoint dominating and paired-dominating sets
    Southey, Justin
    Henning, Michael A.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (03): : 459 - 467
  • [3] Locating and paired-dominating sets in graphs
    McCoy, John
    Henning, Michael A.
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (15) : 3268 - 3280
  • [4] A characterization of graphs with disjoint dominating and paired-dominating sets
    Justin Southey
    Michael A. Henning
    Journal of Combinatorial Optimization, 2011, 22 : 217 - 234
  • [5] MINIMAL GRAPHS WITH DISJOINT DOMINATING AND PAIRED-DOMINATING SETS
    Henning, Michael A.
    Topp, Jerzy
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (03) : 827 - 847
  • [6] A characterization of graphs with disjoint dominating and paired-dominating sets
    Southey, Justin
    Henning, Michael A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 22 (02) : 217 - 234
  • [7] Graphs with unique minimum paired-dominating set
    Chen, Lei
    Lu, Changhong
    Zeng, Zhenbing
    ARS COMBINATORIA, 2015, 119 : 177 - 192
  • [8] Disjoint Paired-Dominating sets in Cubic Graphs
    Bacso, Gabor
    Bujtas, Csilla
    Tompkins, Casey
    Tuza, Zsolt
    GRAPHS AND COMBINATORICS, 2019, 35 (05) : 1129 - 1138
  • [9] Disjoint Paired-Dominating sets in Cubic Graphs
    Gábor Bacsó
    Csilla Bujtás
    Casey Tompkins
    Zsolt Tuza
    Graphs and Combinatorics, 2019, 35 : 1129 - 1138
  • [10] Vertices in all minimum paired-dominating sets of block graphs
    Chen, Lei
    Lu, Changhong
    Zeng, Zhenbing
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (03) : 176 - 191