Significance estimation for large scale metabolomics annotations by spectral matching

被引:0
|
作者
Kerstin Scheubert
Franziska Hufsky
Daniel Petras
Mingxun Wang
Louis-Félix Nothias
Kai Dührkop
Nuno Bandeira
Pieter C. Dorrestein
Sebastian Böcker
机构
[1] Chair for Bioinformatics,
[2] Friedrich Schiller University Jena,undefined
[3] RNA Bioinformatics and High Throughput Analysis,undefined
[4] Friedrich Schiller University Jena,undefined
[5] Collaborative Mass Spectrometry Innovation Center,undefined
[6] Skaggs School of Pharmacy and Pharmaceutical Sciences,undefined
[7] University of California,undefined
[8] Skaggs School of Pharmacy and Pharmaceutical Sciences,undefined
[9] University of California,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The annotation of small molecules in untargeted mass spectrometry relies on the matching of fragment spectra to reference library spectra. While various spectrum-spectrum match scores exist, the field lacks statistical methods for estimating the false discovery rates (FDR) of these annotations. We present empirical Bayes and target-decoy based methods to estimate the false discovery rate (FDR) for 70 public metabolomics data sets. We show that the spectral matching settings need to be adjusted for each project. By adjusting the scoring parameters and thresholds, the number of annotations rose, on average, by +139% (ranging from −92 up to +5705%) when compared with a default parameter set available at GNPS. The FDR estimation methods presented will enable a user to assess the scoring criteria for large scale analysis of mass spectrometry based metabolomics data that has been essential in the advancement of proteomics, transcriptomics, and genomics science.
引用
收藏
相关论文
共 50 条
  • [1] Significance estimation for large scale metabolomics annotations by spectral matching
    Scheubert, Kerstin
    Hufsky, Franziska
    Petras, Daniel
    Wang, Mingxun
    Nothias, Louis-Felix
    Duehrkop, Kai
    Bandeira, Nuno
    Dorrestein, Pieter C.
    Boecker, Sebastian
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [2] LARGE-SCALE DATABASE EXPERIMENTS TO ASSESS THE SIGNIFICANCE OF MATCHING DNA PROFILES
    LAMBERT, JA
    SCRANAGE, JK
    EVETT, IW
    [J]. INTERNATIONAL JOURNAL OF LEGAL MEDICINE, 1995, 108 (01) : 8 - 13
  • [3] A Strategy for Sensitive, Large Scale Quantitative Metabolomics
    Liu, Xiaojing
    Ser, Zheng
    Cluntun, Ahmad A.
    Mentch, Samantha J.
    Locasale, Jason W.
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2014, (87):
  • [4] Spectral scan matching for robot pose estimation
    Park, S.
    Kim, D. H.
    Park, M.
    Park, S. -K.
    [J]. ELECTRONICS LETTERS, 2009, 45 (21) : 1076 - U32
  • [5] Improving large-scale search engines with semantic annotations
    Fuentes-Lorenzo, Damaris
    Fernandez, Norberto
    Fisteus, Jesus A.
    Sanchez, Luis
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (06) : 2287 - 2296
  • [6] Large-scale Boolean Matching
    Katebi, Hadi
    Markov, Igor L.
    [J]. 2010 DESIGN, AUTOMATION & TEST IN EUROPE (DATE 2010), 2010, : 771 - 776
  • [7] Matching large scale ontology effectively
    Wang, Zongjiang
    Wang, Yinglin
    Zhang, Shensheng
    Shen, Ge
    Du, Tao
    [J]. SEMANTIC WEB - ASWC 2006, PROCEEDINGS, 2006, 4185 : 99 - 105
  • [8] Simplified guidelines for the creation of Large Scale Dialectal Arabic Annotations
    Elfardy, Heba
    Diab, Mona
    [J]. LREC 2012 - EIGHTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2012, : 371 - 378
  • [9] A spectral matching approach for parameter and spectral estimation of nonstationary rational processes
    Kaderli, A
    Kayhan, AS
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (10) : 2223 - 2231
  • [10] Large-Scale Metabolomics and the Incidence of Cardiovascular Disease
    Lind, Lars
    Fall, Tove
    Arnlov, Johan
    Elmstahl, Solve
    Sundstrom, Johan
    [J]. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2023, 12 (02):