A note on the product of conjugacy classes of a finite group

被引:0
|
作者
Neda Ahanjideh
机构
[1] Shahrekord University,Department of Pure Mathematics, Faculty of Mathematical Sciences
来源
关键词
The product of conjugacy classes; Almost simple groups; Irreducible character degree; 20E45; 20D05; 20C15;
D O I
暂无
中图分类号
学科分类号
摘要
In Guralnick and Moreto (Conjugacy classes, characters and products of elements, arXiv:1807.03550v1, Theorem 4.2) it has been shown that if p≠q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ne q$$\end{document} are two odd primes, π={2,p,q}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi =\{2,p,q\}$$\end{document} and G is a finite group such that for every π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}-elements x,y∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y \in G$$\end{document} with (O(x),O(y))=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(O(x),O(y))=1$$\end{document}, (xy)G=xGyG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(xy)^G=x^Gy^G$$\end{document}, then G does not have any composition factors of order divisible by pq. In this note, inspired by the above result, we show that if p and q are two primes (not necessarily odd) and G is a finite group such that for every p-element x and q-element y∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y \in G$$\end{document}, (xy)G=xGyG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(xy)^G=x^Gy^G$$\end{document}, then G does not have any composition factors of order divisible by pq. In particular, we show that if p is an odd prime and G is a finite group such that for every p-element x and 2-element y∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y \in G$$\end{document}, (xy)G=xGyG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(xy)^G=x^Gy^G$$\end{document}, then G is p-solvable.
引用
收藏
页码:409 / 412
页数:3
相关论文
共 50 条
  • [1] A note on the product of conjugacy classes of a finite group
    Ahanjideh, Neda
    MONATSHEFTE FUR MATHEMATIK, 2019, 190 (03): : 409 - 412
  • [3] A note on conjugacy classes of finite groups
    Kalra, Hemant
    Gumber, Deepak
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2014, 124 (01): : 31 - 36
  • [4] A NOTE ON CONJUGACY CLASSES OF FINITE GROUPS
    You, Xingzhong
    GEORGIAN MATHEMATICAL JOURNAL, 2008, 15 (04) : 799 - 803
  • [5] A note on conjugacy classes of finite groups
    HEMANT KALRA
    DEEPAK GUMBER
    Proceedings - Mathematical Sciences, 2014, 124 : 31 - 36
  • [6] Powers of conjugacy classes in a finite group
    Antonio Beltrán
    Rachel Deborah Camina
    María José Felipe
    Carmen Melchor
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 409 - 424
  • [7] Powers of conjugacy classes in a finite group
    Beltran, Antonio
    Camina, Rachel Deborah
    Jose Felipe, Maria
    Melchor, Carmen
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (02) : 409 - 424
  • [8] NUMBER CONJUGACY CLASSES IN FINITE GROUP
    GALLAGHER, PX
    MATHEMATISCHE ZEITSCHRIFT, 1970, 118 (03) : 175 - +
  • [9] Finite groups with many product conjugacy classes
    Dade, Everett C.
    ISRAEL JOURNAL OF MATHEMATICS, 2006, 154 (1) : 29 - 49
  • [10] Finite groups with many product conjugacy classes
    Everett C. Dade
    Manoj K. Yadav
    Israel Journal of Mathematics, 2006, 154 : 29 - 49