On the degree of polynomial subgroup growth of nilpotent groups

被引:0
|
作者
D. Sulca
机构
[1] Universidad Nacional de Córdoba,Facultad de Matemáticas, Astronomía y Física
来源
Mathematische Zeitschrift | 2023年 / 303卷
关键词
Subgroup growth; Zeta functions of group and rings; 11M41; 20E07;
D O I
暂无
中图分类号
学科分类号
摘要
Let N be a finitely generated nilpotent group. The subgroup zeta function ζN⩽(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta _N^{\scriptscriptstyle \leqslant }(s)$$\end{document} and the normal zeta function ζN⊲(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta _N^{\scriptscriptstyle \lhd }(s)$$\end{document} of N are Dirichlet series enumerating the finite index subgroups or the finite index normal subgroups of N. We present results about their abscissae of convergence αN⩽\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _N^{\scriptscriptstyle \leqslant }$$\end{document} and αN⊲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _N^{\scriptscriptstyle \lhd }$$\end{document}, also known as the degrees of polynomial subgroup growth and polynomial normal subgroup growth of N, respectively. We first prove some upper bounds for the functions N↦αN⩽\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\mapsto \alpha _N^{\scriptscriptstyle \leqslant }$$\end{document} and N↦αN⊲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\mapsto \alpha _N^{\scriptscriptstyle \lhd }$$\end{document} when restricted to the class of torsion-free nilpotent groups of a fixed Hirsch length. We then show that if two finitely generated nilpotent groups have isomorphic C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}$$\end{document}-Mal’cev completions, then their subgroup (resp. normal) zeta functions have the same abscissa of convergence. This follows, via the Mal’cev correspondence, from a similar result that we establish for zeta functions of rings. This result is obtained by proving that the abscissa of convergence of an Euler product of certain Igusa-type local zeta functions introduced by du Sautoy and Grunewald remains invariant under base change. We also apply this methodology to formulate and prove a version of our result about nilpotent groups for virtually nilpotent groups. As a side application of our result about zeta functions of rings, we present a result concerning the distribution of orders in number fields.
引用
收藏
相关论文
共 50 条