A dual progressive strategy for long-tailed visual recognition

被引:0
|
作者
Hong Liang
Guoqing Cao
Mingwen Shao
Qian Zhang
机构
[1] China University of Petroleum (East China),College of Computer Science and Technology
来源
关键词
Long-tailed recognition; Imbalanced learning; Image classification; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
Unlike the roughly balanced dataset used in the experiments, the long-tail phenomenon in the dataset is more common when applied in practice. Most previous work has typically used re-sampling, re-weighting, and ensemble learning to mitigate the long-tail problem. The first two are the most commonly used (as are we) due to their better generality. Differently, assigning weights to classes directly using the inverse of the sample size to solve such problems may not be a good strategy, which often sacrifices the performance of the head classes. We propose a new approach to cost allocation, which consists of two parts: the first part is trained in an unweighted manner to ensure that the network is adequately fitted to the head data. The second part then dynamically assigns weights based on the relative difficulty of the class levels.In addition, we propose a novel, practical Grabcut-based data augmentation approach to increase the diversity and differentiation of the mid-tail class data. Extensive experiments on public and self-constructed long-tailed datasets demonstrate the effectiveness of our approach and achieve excellent performance.
引用
收藏
相关论文
共 50 条
  • [1] A dual progressive strategy for long-tailed visual recognition
    Liang, Hong
    Cao, Guoqing
    Shao, Mingwen
    Zhang, Qian
    MACHINE VISION AND APPLICATIONS, 2024, 35 (01)
  • [2] A Survey on Long-Tailed Visual Recognition
    Yang, Lu
    Jiang, He
    Song, Qing
    Guo, Jun
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (07) : 1837 - 1872
  • [3] A Survey on Long-Tailed Visual Recognition
    Lu Yang
    He Jiang
    Qing Song
    Jun Guo
    International Journal of Computer Vision, 2022, 130 : 1837 - 1872
  • [4] Contrastive dual-branch network for long-tailed visual recognition
    Jie Miao
    Junhai Zhai
    Ling Han
    Pattern Analysis and Applications, 2025, 28 (1)
  • [5] Decoupled Optimisation for Long-Tailed Visual Recognition
    Cong, Cong
    Xuan, Shiyu
    Liu, Sidong
    Zhang, Shiliang
    Pagnucco, Maurice
    Song, Yang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 2, 2024, : 1380 - 1388
  • [6] Divide and Retain: A Dual-Phase Modeling for Long-Tailed Visual Recognition
    Zhang, Hu
    Zhu, Linchao
    Wang, Xiaohan
    Yang, Yi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 12
  • [7] Feature fusion network for long-tailed visual recognition
    Zhou, Xuesong
    Zhai, Junhai
    Cao, Yang
    PATTERN RECOGNITION, 2023, 144
  • [8] Attentive Feature Augmentation for Long-Tailed Visual Recognition
    Wang, Weiqiu
    Zhao, Zhicheng
    Wang, Pingyu
    Su, Fei
    Meng, Hongying
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (09) : 5803 - 5816
  • [9] Disentangling Label Distribution for Long-tailed Visual Recognition
    Hong, Youngkyu
    Han, Seungju
    Choi, Kwanghee
    Seo, Seokjun
    Kim, Beomsu
    Chang, Buru
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 6622 - 6632
  • [10] Nested Collaborative Learning for Long-Tailed Visual Recognition
    Li, Jun
    Tan, Zichang
    Wan, Jun
    Lei, Zhen
    Guo, Guodong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6939 - 6948