Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions

被引:0
|
作者
Yunfeng Wei
Caisheng Chen
Hongwei Yang
Hongxue Song
机构
[1] Hohai University,College of Science
[2] Nanjing Audit University,College of Science
[3] Shandong University of Science and Technology,College of Mathematics and Systems Science
[4] Nanjing University of Posts and Telecommunications,College of Science
来源
关键词
Fractional ; -Kirchhoff system; Multiplicity; Sign-changing weight functions; Nehari manifold; Mountain pass theorem; 35R11; 35A15; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the fractional p-Kirchhoff -type system: {M(∫R2N|u(x)−u(y)|p|x−y|N+psdxdy)(−Δ)psu=μg(x)|u|β−2u+aa+bh(x)|u|a−2u|v|b,in Ω,M(∫R2N|v(x)−v(y)|p|x−y|N+psdxdy)(−Δ)psv=σf(x)|v|β−2v+ba+bh(x)|v|b−2v|u|a,in Ω,u=v=0,in RN∖Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \textstyle\begin{cases} M (\int_{{ \mathbb {R} }^{2N}}\frac{\vert u(x)-u(y) \vert ^{p}}{\vert x-y \vert ^{N+ps}}\,dx\,dy )(- \Delta )^{s}_{p}u=\mu g(x)\vert u \vert ^{\beta -2}u+\frac{a}{a+b}h(x)\vert u \vert ^{a-2}u\vert v \vert ^{b},&\mbox{in } \Omega , \\ M (\int_{{ \mathbb {R} }^{2N}}\frac{\vert v(x)-v(y) \vert ^{p}}{\vert x-y \vert ^{N+ps}}\,dx\,dy )(- \Delta )^{s}_{p}v=\sigma f(x)\vert v \vert ^{\beta -2}v+\frac{b}{a+b}h(x)\vert v \vert ^{b-2}v\vert u \vert ^{a},&\mbox{in } \Omega , \\ u=v=0,&\mbox{in } { \mathbb {R} }^{N}\setminus \Omega , \end{cases}\displaystyle \end{aligned}$$ \end{document} where Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \subset \mathbb{R}^{N}$\end{document} is a smooth bounded domain, (−Δ)ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(-\Delta )^{s}_{p}$\end{document} is the fractional p-Laplacian operator with 0<s<1<p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< s<1<p$\end{document} and ps<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ps< N $\end{document}. a>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a>1$\end{document}, b>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b>1$\end{document} satisfy 2<a+b<ps∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2< a+b< p_{s}^{*}$\end{document}. 1<β<ps∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1<\beta <p_{s}^{*}$\end{document}, ps∗=NpN−ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{s}^{*}=\frac{Np}{N-ps}$\end{document} is the fractional critical exponent. μ, σ are two real parameters. M(t)=k+λtτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M(t)=k+\lambda t^{\tau }$\end{document}, k>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k>0$\end{document}, λ, τ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau \geq 0$\end{document}, τ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau =0$\end{document} if and only if λ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda =0$\end{document}. The weight functions g, f, h change sign in Ω and satisfy suitable conditions. By using the Nehari manifold method, it is proved that the system has at least two solutions provided that 2<a+b<p≤p(τ+1)<β<ps∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2< a+b< p\leq p(\tau +1)<\beta <p_{s}^{*}$\end{document} and (μ,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mu ,\sigma )$\end{document} belongs to a certain subset of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R} ^{2}$\end{document}. Also, by using the mountain pass theorem, we prove that there exist λ1≥λ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda _{1}\geq \lambda_{0}$\end{document} such that the system admits at least a nontrivial solution for λ∈(0,λ0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \in (0,\lambda_{0})$\end{document} and no nontrivial solution for λ>λ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda >\lambda_{1}$\end{document} under the assumptions μ=σ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu =\sigma =0$\end{document} and p<a+b<min{p(τ+1),ps∗}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p< a+b<\min \{p(\tau +1),p_{s}^{*}\}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions
    Wei, Yunfeng
    Chen, Caisheng
    Yang, Hongwei
    Song, Hongxue
    [J]. BOUNDARY VALUE PROBLEMS, 2018,
  • [2] Fractional p-Kirchhoff problems involving critical exponents and sign-changing weight functions
    Liang, Sihua
    Zhang, Binlin
    [J]. ASYMPTOTIC ANALYSIS, 2019, 115 (1-2) : 47 - 61
  • [3] Existence and multiple solutions for the critical fractional p-Kirchhoff type problems involving sign-changing weight functions
    Yang, Jie
    Chen, Haibo
    Liu, Senli
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (11) : 6546 - 6567
  • [4] Multiple solutions for a coupled Kirchhoff system with fractional p-Laplacian and sign-changing weight functions
    Zhen, Maoding
    Yang, Meihua
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (06) : 1326 - 1351
  • [5] MULTIPLICITY AND CONCENTRATION OF POSITIVE SOLUTIONS TO THE FRACTIONAL KIRCHHOFF TYPE PROBLEMS INVOLVING SIGN-CHANGING WEIGHT FUNCTIONS
    Yang, Jie
    Chen, Haibo
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (09) : 3047 - 3074
  • [6] Fractional p-Kirchhoff system with sign changing nonlinearities
    Mishra, Pawan Kumar
    Sreenadh, K.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (01) : 281 - 296
  • [7] Fractional p-Kirchhoff system with sign changing nonlinearities
    Pawan Kumar Mishra
    K. Sreenadh
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 281 - 296
  • [8] Multiplicity Results for a Class of Kirchhoff-Schrodinger-Poisson System Involving Sign-Changing Weight Functions
    Yang, Dandan
    Bai, Chuanzhi
    [J]. JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [9] EXISTENCE OF MULTIPLE NONTRIVIAL SOLUTIONS FOR A p-KIRCHHOFF TYPE ELLIPTIC PROBLEM INVOLVING SIGN-CHANGING WEIGHT FUNCTIONS
    Li, Yuanxiao
    Mei, Ming
    Zhang, Kaijun
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (03): : 883 - 908
  • [10] Multiple Positive Solutions for p-Kirchhoff Problems with Sign-Changing Potential
    Yazdani, Somayeh
    Afrouzi, Ghasem Alizadeh
    Roshan, Jamal Rezaee
    Rasouli, Sayed Hashem
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (02)