Improved mechanical properties of 3D-printed parts by fused deposition modeling processed under the exclusion of oxygen

被引:0
|
作者
Lederle F. [1 ]
Meyer F. [1 ]
Brunotte G.-P. [2 ]
Kaldun C. [1 ]
Hübner E.G. [1 ]
机构
[1] Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstr. 6, Clausthal-Zellerfeld
[2] Clausthal University of Technology, Institute of Polymer Materials and Plastics Engineering, Agricolastr. 6, Clausthal-Zellerfeld
关键词
Acrylonitrile butadiene styrene; Fused deposition modeling; Inert gas; Polyamide; Tensile tests;
D O I
10.1007/s40964-016-0010-y
中图分类号
学科分类号
摘要
3D printing via fused deposition modeling (FDM) has developed to the probably most common rapid prototyping technology due to its easy of use and broad range of available materials. Nowadays, FDM printed parts are on the way to be used in various applications ranging from all-day use to more technical purposes. As a matter of fact, the mechanical strength is one of the main parameters to be optimized by the choice of the material and the 3D-printing settings, such as layer height, nozzle temperature and printing speed. Here, we report on the improvement of the mechanical properties of printed parts by use of an inert gas atmosphere during the print. A typical FDM printer has been inserted into the nitrogen atmosphere of a glove box and used without modifications to print parts made of acrylonitrile butadiene styrene and polyamide as printing materials with a high mechanical load tolerance. Probably partly due to the prevention of oxidation processes, a significant increase in elongation at break and tensile strength was observed. This may be explained by a reduced degradation of the polymer surface at the comparatively high printing temperature. 3D printing under the exclusion of oxygen may be realized comparatively easy by flooding the printing chamber with nitrogen in future applications for the production of FDM-printed parts with improved mechanical properties. © 2016, Springer International Publishing Switzerland.
引用
收藏
页码:3 / 7
页数:4
相关论文
共 50 条
  • [1] Structure and mechanical properties of 3D-printed cellulose tablets by fused deposition modeling
    Paggi, Rodrigo Acacio
    Salmoria, Gean Vitor
    Ghizoni, Gabriel Bussolo
    Back, Henrique de Medeiros
    Gindri, Izabelle de Mello
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 100 (9-12): : 2767 - 2774
  • [2] Structure and mechanical properties of 3D-printed cellulose tablets by fused deposition modeling
    Rodrigo Acácio Paggi
    Gean Vitor Salmoria
    Gabriel Bussolo Ghizoni
    Henrique de Medeiros Back
    Izabelle de Mello Gindri
    The International Journal of Advanced Manufacturing Technology, 2019, 100 : 2767 - 2774
  • [3] Investigating Mechanical Properties of 3D-Printed Polyethylene Terephthalate Glycol Material Under Fused Deposition Modeling
    Panneerselvam T.
    Raghuraman S.
    Vamsi Krishnan N.
    Journal of The Institution of Engineers (India): Series C, 2021, 102 (02) : 375 - 387
  • [4] Experimental investigation of fracture toughness of fused deposition modeling 3D-printed PLA parts
    Kizhakkinan U.
    Rosen D.W.
    Raghavan N.
    Materials Today: Proceedings, 2022, 70 : 631 - 637
  • [5] Finite Element Analysis of Warping and Mechanical Properties of 3D Parts Printed by Fused Deposition Modeling
    Yu, Baiqing
    Chen, Guoguang
    Sun, Jingfeng
    Hua, Weijian
    Wu, Weibin
    Jin, Yifei
    Zhou, Wuyi
    Liu, Jia
    Zheng, Wenxu
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 34 (3) : 2410 - 2423
  • [6] Vapour polishing of fused deposition modelling (FDM) parts: a critical review of different techniques, and subsequent surface finish and mechanical properties of the post-processed 3D-printed parts
    Amal Mathew
    S. Ram Kishore
    Anchil Tona Tomy
    M. Sugavaneswaran
    Steffen G. Scholz
    Ahmed Elkaseer
    Vincent H. Wilson
    A. John Rajan
    Progress in Additive Manufacturing, 2023, 8 : 1161 - 1178
  • [7] Vapour polishing of fused deposition modelling (FDM) parts: a critical review of different techniques, and subsequent surface finish and mechanical properties of the post-processed 3D-printed parts
    Mathew, Amal
    Kishore, S. Ram
    Tomy, Anchil Tona
    Sugavaneswaran, M.
    Scholz, Steffen G.
    Elkaseer, Ahmed
    Wilson, Vincent H.
    Rajan, A. John
    PROGRESS IN ADDITIVE MANUFACTURING, 2023, 8 (06) : 1161 - 1178
  • [8] Effect of Printing Parameters on the Thermal and Mechanical Properties of 3D-Printed PLA and PETG, Using Fused Deposition Modeling
    Hsueh, Ming-Hsien
    Lai, Chao-Jung
    Wang, Shi-Hao
    Zeng, Yu-Shan
    Hsieh, Chia-Hsin
    Pan, Chieh-Yu
    Huang, Wen-Chen
    POLYMERS, 2021, 13 (11)
  • [9] Improved mechanical properties of 3D-printed SiC/PLA composite parts by microwave heating
    Wang, Yanqing
    Liu, Zengguang
    Gu, Huwei
    Cui, Chunzhi
    Hao, Jingbin
    JOURNAL OF MATERIALS RESEARCH, 2019, 34 (20) : 3412 - 3419
  • [10] Improved mechanical properties of 3D-printed SiC/PLA composite parts by microwave heating
    Yanqing Wang
    Zengguang Liu
    Huwei Gu
    Chunzhi Cui
    Jingbin Hao
    Journal of Materials Research, 2019, 34 : 3412 - 3419