Optimality conditions for approximate proper solutions in multiobjective optimization with polyhedral cones

被引:0
|
作者
C. Gutiérrez
L. Huerga
B. Jiménez
V. Novo
机构
[1] IMUVA (Institute of Mathematics of University of Valladolid),Departamento de Matemática Aplicada
[2] E.T.S.I. Industriales,undefined
[3] Universidad Nacional de Educación a Distancia,undefined
来源
TOP | 2020年 / 28卷
关键词
Multiobjective optimization; Optimality conditions; Approximate proper efficiency; Polyhedral ordering cone; Nonlinear Lagrangian; Linear scalarization; 90C25; 90C26; 90C29; 90C30; 90C46;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we provide optimality conditions for approximate proper solutions of a multiobjective optimization problem, whose feasible set is given by a cone constraint and the ordering cone is polyhedral. A first class of optimality conditions is given by means of a nonlinear scalar Lagrangian and the second kind through a linear scalarization technique, under generalized convexity hypotheses, that lets us derive a Kuhn–Tucker multiplier rule.
引用
收藏
页码:526 / 544
页数:18
相关论文
共 50 条