Pullback attractors for 3D MHD equations with damping

被引:0
|
作者
Xiaoya Song
机构
[1] Hohai University,Department of Mathematics College of Science
关键词
3D MHD equations; Damping; Pullback attractor; 35Q35; 35B41; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
The existence of pullback attractors is proved for the MHD equations with damping terms |u|α-1u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|u|^{\alpha -1}u$$\end{document} and |B|β-1B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|B|^{\beta -1}B$$\end{document}(α,β⩾1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta \geqslant 1)$$\end{document} on a bounded domain Ω⊂R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^{3}$$\end{document}. Based on the well-posedness of the strong solution in Song and Xiong (J Math Anal Appl 505(2):36, 2022) and under suitable assumptions on the external force, first, we establish some estimates for the strong solution. Then, the continuity of the corresponding process is verified under the assumption α,β<5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta <5$$\end{document}, which is guided by Gagliardo–Nirenberg inequality. Finally, the system is shown to possess an (V,V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb {V}},{\mathbb {V}})$$\end{document}-pullback attractor and an (V,H2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb {V}},\mathbf{H }^{2})$$\end{document}-pullback attractor.
引用
收藏
相关论文
共 50 条
  • [1] Pullback attractors for 3D MHD equations with damping
    Song, Xiaoya
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (02):
  • [2] Pullback D-Attractors of the 3D Boussinesq Equations with Damping
    Li, Chaofan
    Liu, Hui
    Xin, Jie
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (03) : 1343 - 1366
  • [3] Uniform attractors for 3D MHD equations with nonlinear damping
    Song, Xiaoya
    [J]. APPLICABLE ANALYSIS, 2024, 103 (14) : 2647 - 2659
  • [4] Pullback attractors for 2D MHD equations with delays
    Song, Xiaoya
    Xiong, Yangmin
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (07) : 1ENG
  • [5] Degenerate Pullback Attractors for the 3D Navier–Stokes Equations
    Alexey Cheskidov
    Landon Kavlie
    [J]. Journal of Mathematical Fluid Mechanics, 2015, 17 : 411 - 421
  • [6] Attractors of the 3D Magnetohydrodynamics Equations with Damping
    Liu, Hui
    Sun, Chengfeng
    Xin, Jie
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (01) : 337 - 351
  • [7] Attractors of the 3D Magnetohydrodynamics Equations with Damping
    Hui Liu
    Chengfeng Sun
    Jie Xin
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 337 - 351
  • [8] Degenerate Pullback Attractors for the 3D Navier-Stokes Equations
    Cheskidov, Alexey
    Kavlie, Landon
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2015, 17 (03) : 411 - 421
  • [9] On the 3D ideal MHD equations with partial damping
    Jia, Xuanji
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 116
  • [10] Trajectory Attractors of the 3D Micropolar Equations with Damping Term
    Xiaojie Yang
    Hui Liu
    Chengfeng Sun
    [J]. Mediterranean Journal of Mathematics, 2022, 19