Homological Invariants of Pauli Stabilizer Codes

被引:1
|
作者
Ruba, Blazej [1 ]
Yang, Bowen [2 ]
机构
[1] Jagiellonian Univ, Inst Theoret Phys, Prof Lojasiewicza 11, PL-30348 Krakow, Poland
[2] CALTECH, Pasadena, CA 91125 USA
关键词
D O I
10.1007/s00220-024-04991-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study translationally invariant Pauli stabilizer codes with qudits of arbitrary, not necessarily uniform, dimensions. Using homological methods, we define a series of invariants called charge modules. We describe their properties and physical meaning. The most complete results are obtained for codes whose charge modules have Krull dimension zero. This condition is interpreted as mobility of excitations. We show that it is always satisfied for translation invariant 2D codes with unique ground state in infinite volume, which was previously known only in the case of uniform, prime qudit dimension. For codes all of whose excitations are mobile we construct a p-dimensional excitation and a ( D - p - 1 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(D-p-1)$$\end{document} -form symmetry for every element of the p-th charge module. Moreover, we define a braiding pairing between charge modules in complementary degrees. We discuss examples which illustrate how charge modules and braiding can be computed in practice.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Homological stabilizer codes
    Anderson, Jonas T.
    ANNALS OF PHYSICS, 2013, 330 : 1 - 22
  • [2] Homological invariants of stabilizer states
    Wirthmueller, Klaus
    QUANTUM INFORMATION & COMPUTATION, 2008, 8 (6-7) : 595 - 621
  • [3] Local invariants of stabilizer codes
    Van den Nest, M
    Dehaene, J
    De Moor, B
    PHYSICAL REVIEW A, 2004, 70 (03): : 032323 - 1
  • [4] Fast Stabilizer Quantum Codes Using Pauli block Matrices
    Huang, ChenRrong
    Guo, Ying
    Lee, MoonHo
    ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 3, PROCEEDINGS, 2008, : 628 - +
  • [5] Extracting Topological Orders of Generalized Pauli Stabilizer Codes in Two Dimensions
    Liang, Zijian
    Xu, Yijia
    Iosue, Joseph T.
    Chen, Yu-An
    PRX QUANTUM, 2024, 5 (03):
  • [6] Non-Pauli topological stabilizer codes from twisted quantum doubles
    de la Fuente, Julio Carlos Magdalena
    Tarantino, Nicolas
    Eisert, Jens
    QUANTUM, 2021, 5
  • [7] HOMOLOGICAL INVARIANTS OF RINGS
    GULLIKSE.TH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 532 - &
  • [8] Powers of sums and their homological invariants
    Nguyen, Hop D.
    Thanh Vu
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (07) : 3081 - 3111
  • [9] Homological invariants of determinantal thickenings
    Raicu, Claudiu
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2017, 60 (04): : 425 - 446
  • [10] HOMOLOGICAL INVARIANTS OF LOCAL RINGS
    WIEBE, H
    MATHEMATISCHE ANNALEN, 1969, 179 (04) : 257 - &