A pure smoothness condition for radó’s theorem for α-analytic functions

被引:0
|
作者
Abtin Daghighi
Frank Wikström
机构
[1] Linköping University,Center for Medical Image Science and Visualization
[2] Lund University,Matematikcentrum
来源
关键词
-analytic function; polyanalytic function; zero set; Radó’s theorem; 35G05; 30C15; 32A99; 32U15;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {{\Bbb C}^n}$$\end{document} be a bounded, simply connected ℂ-convex domain. Let α ∈ ℤ+n and let f be a function on Ω which is separately \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^{2{\alpha _j} - 1}}$$\end{document}-smooth with respect to zj (by which we mean jointly \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^{2{\alpha _j} - 1}}$$\end{document}-smooth with respect to Rezj, Imzj). If f is α-analytic on Ω\f−1(0), then f is α-analytic on Ω. The result is well-known for the case αi = 1, 1 ⩽ i ⩽ n, even when f a priori is only known to be continuous.
引用
收藏
页码:57 / 62
页数:5
相关论文
共 50 条