Modified (0, 2)-Interpolation on the Roots of Jacobi Polynomials. I (Explicit Formulae)

被引:0
|
作者
Margit Lénárd
机构
[1] Kuwait University,Department of Mathematics and Computer Science
来源
关键词
Boundary Condition; Real Number; Explicit Formula; Nodal Point; Minimal Degree;
D O I
暂无
中图分类号
学科分类号
摘要
Let the set of knots \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ - 1 = x_{n + 1} < x_n < ... < x_1 < x_0 = 1 (n \geqq 1)$$ \end{document} (n ≧ 1) be given on the interval [-1, 1]. Find a polynomial Qm(x) of minimal degree satisfying (0, 2)-interpolational conditions at the inner knots and boundary conditions at the endpoints, that is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$Q_m^{(s)} (x_i ) = y_i^{(s)} (s = 0,2) for i = 1,..., u_1$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$Q_m^{(j)} (x_O ) = \alpha _O^{(j)} for j = 1,..., k$$ \end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$Q_m^{(j)} (x_{n + 1} ) = \alpha _{n + 1}^{(j)} for j = 0,..., l$$ \end{document} where yi(s),αO(j), αn+1(j) are arbitrarily given real numbers, and k, l are arbitrary fixed non-negative integers. In this paper the existence and uniqueness of the polynomial Qm(x) is proved if the inner nodal points are the zeros of Jacobi polynomials Pn2k + 1, 2l − 1 (x) or Pn2k − 1, 2l + 1 (x). Explicit formulae for the fundamental polynomials of interpolation are also given.
引用
收藏
页码:317 / 327
页数:10
相关论文
共 27 条