Microstructure Evolution of Commercial Pure Titanium During Interrupted In Situ Tensile Test

被引:0
|
作者
Qian Wang
Shiying Wang
Patrick Moll
Auriane Mandrelli
Jean-Sébastien Lecomte
Christophe Schuman
机构
[1] Université de Lorraine,Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux (LEM3)
[2] CNRS,Laboratory of Excellence on Design of Alloy Metals for Low
[3] Université de Lorraine,mAss Structures (DAMAS)
[4] Changzhou University,School of Materials Science & Engineering
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Microstructure evolution of commercial pure titanium is investigated by interrupted in situ electron backscatter diffraction (EBSD) measurement during tensile deformation along transverse direction at room temperature. After 24 pct elongation, the split basal texture of initial material is weakened and rotated around 90 deg along normal direction (ND). 112¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{11}\bar{2}{{2}}}$$\end{document}-101¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{10}\bar{1}{{2}}}$$\end{document} double twin is the main reason for the change of texture. The basal poles are rotated nearly perpendicular to ND by the primary 112¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{11}\bar{2}{{2}}}$$\end{document} twin and back to ND through the reorientation of 101¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{10}\bar{1}{{2}}}$$\end{document} secondary twin. Both Schmid factor criterion and displacement gradient accommodation are considered to predict the twin-induced texture evolution during TD tension. Kink bands formed by the accumulation of basal 〈a〉 dislocations are also observed in the deformed grain. The activation of other slip systems can deviate the rotation axis and reduce the rotation angle of kink boundary. Besides, the kink boundary with high basal dislocation density obviously hinders the twin transmission and simultaneously can be taken as a preferential nucleation site for 112¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{11}\bar{2}{{2}}}$$\end{document} twin.
引用
收藏
页码:2477 / 2488
页数:11
相关论文
共 50 条
  • [1] Microstructure Evolution of Commercial Pure Titanium During Interrupted In Situ Tensile Test
    Wang, Qian
    Wang, Shiying
    Moll, Patrick
    Mandrelli, Auriane
    Lecomte, Jean-Sebastien
    Schuman, Christophe
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2021, 52 (06): : 2477 - 2488
  • [2] Microstructure evolution of titanium after tensile test
    Wronski, S.
    Wierzbanowski, K.
    Jcdrychowski, M.
    Tarasiuk, J.
    Wronski, M.
    Baczmanski, A.
    Bacroix, B.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 656 : 1 - 11
  • [3] Microstructure evolution of commercial pure titanium during equal channel angular pressing
    Chen, Y. J.
    Li, Y. J.
    Walmsley, J. C.
    Dumoulin, S.
    Skaret, P. C.
    Roven, H. J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (03): : 789 - 796
  • [4] Microstructure and texture evolution of commercial pure titanium deformed at elevated temperatures
    Zeng, Zhipeng
    Zhang, Yanshu
    Jonsson, Stefan
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 513-14 : 83 - 90
  • [5] Microstructure evolution and mechanical properties of commercial pure titanium subjected to rotary swaging
    Meng, Ao
    Chen, Xiang
    Nie, Jinfeng
    Gu, Lei
    Mao, Qingzhong
    Zhao, Yonghao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 859 (859)
  • [6] Microstructure evolution of commercial-purity titanium during cryorolling
    G. S. D’yakonov
    S. V. Zherebtsov
    M. V. Klimova
    G. A. Salishchev
    The Physics of Metals and Metallography, 2015, 116 : 182 - 188
  • [7] Microstructure evolution of commercial-purity titanium during cryorolling
    D'yakonov, G. S.
    Zherebtsov, S. V.
    Klimova, M. V.
    Salishchev, G. A.
    PHYSICS OF METALS AND METALLOGRAPHY, 2015, 116 (02): : 182 - 188
  • [8] In situ lattice strains analysis in titanium during a uniaxial tensile test
    Gloaguen, D.
    Girault, B.
    Fajoui, J.
    Klosek, V.
    Moya, M. -J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 662 : 395 - 403
  • [9] Flow stress behavior of commercial pure titanium sheet during warm tensile deformation
    Tsao, L. C.
    Wu, H. Y.
    Leong, J. C.
    Fang, C. J.
    MATERIALS & DESIGN, 2012, 34 : 179 - 184
  • [10] Microstructure evolution of titanium after tensile and recrystallisation
    Wronski, S.
    Jedrychowski, M.
    Tarasiuk, J.
    Bacroix, B.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 692 : 113 - 126