Waste ashes as catalysts for the pyrolysis–catalytic steam reforming of biomass for hydrogen-rich gas production

被引:0
|
作者
Amal S. Al-Rahbi
Paul T. Williams
机构
[1] University of Leeds,School of Chemical and Process Engineering
关键词
Biomass; Pyrolysis; Reforming; Waste; Ash;
D O I
暂无
中图分类号
学科分类号
摘要
Combustion ashes from coal, refuse-derived fuel (RDF) and waste tyres have been investigated as potential catalysts for the production of a hydrogen-rich gas from waste biomass. The process used a two-stage reactor involving pyrolysis of the biomass followed by catalytic steam reforming of the evolved pyrolysis gases using the ash catalysts. The ashes were also impregnated with 10 wt% nickel to determine the influence on hydrogen production. In the presence of the ash samples, the total gas yield and hydrogen yield significantly increased, particularly for the refuse-derived ash. The ash samples contained a high metal content, including Al, Ca, Mg, Cu and Fe, K, Na and Zn. All such metals have been reported to act as catalysts for hydrogen production. In the absence of catalyst, the total gas yield from the biomass was 39.9 wt% which increased to 52.7 wt% with the tyre rubber ash, to 50.3 wt% with coal ash and 59.5 wt% with RDF ash. The highest hydrogen yield of 7.90 mmol g−1biomass was produced in the presence of the RDF-derived ash, representing 29.73 vol% H2. Addition of nickel to the combustion ash samples showed a further significant increase of ~ 20% in the yield of hydrogen.
引用
收藏
页码:1224 / 1231
页数:7
相关论文
共 50 条
  • [1] Waste ashes as catalysts for the pyrolysis-catalytic steam reforming of biomass for hydrogen-rich gas production
    Al-Rahbi, Amal S.
    Williams, Paul T.
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2019, 21 (05) : 1224 - 1231
  • [2] Waste derived ash as catalysts for the pyrolysis-catalytic steam reforming of waste plastics for hydrogen-rich syngas production
    Li, Yukun
    Williams, Paul T.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2024, 177
  • [3] Steam Gasification of Catalytic Pyrolysis Char for Hydrogen-rich Gas Production
    Sun, Wu-xing
    Zhou, Yan
    Wang, Qi
    Wang, Shu-rong
    ENERGY ENGINEERING AND ENVIRONMENTAL ENGINEERING, PTS 1AND 2, 2013, 316-317 : 105 - +
  • [4] Catalytic Reforming of Volatiles from Biomass Pyrolysis for Hydrogen-Rich Gas Production over Limonite Ore
    Zhao, Xiao-Yan
    Ren, Jie
    Cao, Jing-Pei
    Wei, Fu
    Zhu, Chen
    Fan, Xing
    Zhao, Yun-Peng
    Wei, Xian-Yong
    ENERGY & FUELS, 2017, 31 (04) : 4054 - 4060
  • [5] Hydrogen-rich syngas production from biomass pyrolysis and catalytic reforming using biochar-based catalysts
    Wang, Yanjie
    Huang, Liang
    Zhang, Tianyu
    Wang, Qiang
    FUEL, 2022, 313
  • [6] Hydrogen-Rich Gas Production from Pyrolysis of Biomass in an Autogenerated Steam Atmosphere
    Hu Guoxin
    Huang Hao
    Li Yanhong
    ENERGY & FUELS, 2009, 23 (3-4) : 1748 - 1753
  • [7] Fe-Ni-MCM-41 Catalysts for Hydrogen-Rich Syngas Production from Waste Plastics by Pyrolysis-Catalytic Steam Reforming
    Zhang, Yeshui
    Huang, Jun
    Williams, Paul T.
    ENERGY & FUELS, 2017, 31 (08) : 8497 - 8504
  • [8] STEAM PYROLYSIS AND CATALYTIC STEAM REFORMING OF BIOMASS FOR HYDROGEN AND BIOCHAR PRODUCTION
    Das, K. C.
    Singh, K.
    Adolphson, R.
    Hawkins, B.
    Oglesby, R.
    Lakly, D.
    Day, D.
    APPLIED ENGINEERING IN AGRICULTURE, 2010, 26 (01) : 137 - 146
  • [9] Dry and steam reforming of biomass pyrolysis gas for rich hydrogen gas
    Xu, Xiwei
    Jiang, Enchen
    Wang, Mingfeng
    Xu, Youjie
    BIOMASS & BIOENERGY, 2015, 78 : 6 - 16
  • [10] Catalytic pyrolysis of waste biomass to produce hydrogen-rich gas: Influence of catalyst performance
    Li, Xueqin
    Liu, Peng
    Lu, Yan
    Wang, Zhiwei
    Wu, Youqing
    Lei, Tingzhou
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2024, 52 (07): : 976 - 987