Dimensional Crossover in the Bose–Einstein Condensation Confined to Anisotropic Three-Dimensional Lattices

被引:0
|
作者
K. K. Witkowski
T. K. Kopeć
机构
[1] University of Wrocław,Faculty of Physics and Astronomy
[2] Polish Academy of Sciences,Institute of Low Temperature and Structure Research
来源
关键词
Bose–Einstein condensation; Dimensional crossover; Lattice anisotropy; Thermodynamics;
D O I
暂无
中图分类号
学科分类号
摘要
The Bose–Einstein condensation (BEC) in three-dimensional (3D) anisotropic lattices is studied. We present theoretical results for the critical temperature for BEC, chemical potential, condensate fraction and relevant thermodynamic quantities like: internal energy, entropy, specific heat and compressibility as a function of anisotropy parameter being the ratio of the nearest-neighbor in-plane (t‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_\parallel$$\end{document}) and out-of-plane (t⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_\perp$$\end{document}) hopping amplitudes. In particular, considered scenarios include weakly coupled two-dimensional (2D) planes (t⊥/t‖≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_\perp /t_\parallel \ll 1$$\end{document}, relevant for layered structures) as well as a rod-like geometry of interacting one-dimensional (1D) chains (t‖/t⊥≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_\parallel /t_\perp \ll 1$$\end{document}). The impact of the dimensional crossover as the system is tuned away from a set of disconnected 2D layers, or traverses from a set of separate 1D chains to a regime where a fully isotropic 3D structure emerges is elucidated. Both numerical and analytic approaches are employed, (the latter in a form of series expansions involving t‖,t⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_\parallel ,t_\perp$$\end{document} amplitudes) for internal energy, entropy, specific heat and isothermal compressibility. The theoretical outcome of the present study may be of interest to a number of scenarios in solid-state physics, where the relevant quasi-particles are bosonic-like, as well as might be applicable to the physics of cold bosons loaded in artificially engineered 3D optical lattices.
引用
收藏
页码:340 / 372
页数:32
相关论文
共 50 条
  • [1] Dimensional Crossover in the Bose-Einstein Condensation Confined to Anisotropic Three-Dimensional Lattices
    Witkowski, K. K.
    Kopec, T. K.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 201 (3-4) : 340 - 372
  • [2] Finite-temperature effects on the superfluid Bose-Einstein condensation of confined ultracold atoms in three-dimensional optical lattices
    Polak, T. P.
    Kopec, T. K.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2009, 42 (09)
  • [3] Dimensional crossover for the Bose-Einstein condensation.
    Molina, M
    Rossler, J
    REVISTA MEXICANA DE FISICA, 1998, 44 : 46 - 51
  • [4] Dimensional crossover of Bose-Einstein condensation of atomic gases in anisotropic harmonic traps
    Tan, Chengtai
    Wang, Qi
    Du, Xuerui
    Ma, Yongli
    ANNALS OF PHYSICS, 2022, 440
  • [5] Vortex Reconnections in Anisotropic Trapped Three-Dimensional Bose–Einstein Condensates
    T. Wells
    A. U. J. Lode
    V. S. Bagnato
    M. C. Tsatsos
    Journal of Low Temperature Physics, 2015, 180 : 133 - 143
  • [6] Anisotropic collapse in three-dimensional dipolar Bose-Einstein condensates
    Ilan, Boaz
    Taylor, Jessica
    PHYSICS LETTERS A, 2020, 384 (09)
  • [7] Dimensional crossover of Bose-Einstein-condensation phenomena in quantum gases confined within slab geometries
    Delfino, Francesco
    Vicari, Ettore
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [8] Boundary effects of Bose-Einstein condensation in a three-dimensional harmonic trap
    Yuan Du-Qi
    ACTA PHYSICA SINICA, 2014, 63 (17)
  • [9] Vortex Reconnections in Anisotropic Trapped Three-Dimensional Bose-Einstein Condensates
    Wells, T.
    Lode, A. U. J.
    Bagnato, V. S.
    Tsatsos, M. C.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2015, 180 (1-2) : 133 - 143
  • [10] Three-dimensional Bose-Einstein gap solitons in optical lattices with fractional diffraction
    Chen, Zhiming
    Liu, Xiuye
    Xie, Hongqiang
    Zeng, Jianhua
    CHAOS SOLITONS & FRACTALS, 2024, 180