The Bose–Einstein condensation (BEC) in three-dimensional (3D) anisotropic lattices is studied. We present theoretical results for the critical temperature for BEC, chemical potential, condensate fraction and relevant thermodynamic quantities like: internal energy, entropy, specific heat and compressibility as a function of anisotropy parameter being the ratio of the nearest-neighbor in-plane (t‖\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$t_\parallel$$\end{document}) and out-of-plane (t⊥\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$t_\perp$$\end{document}) hopping amplitudes. In particular, considered scenarios include weakly coupled two-dimensional (2D) planes (t⊥/t‖≪1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$t_\perp /t_\parallel \ll 1$$\end{document}, relevant for layered structures) as well as a rod-like geometry of interacting one-dimensional (1D) chains (t‖/t⊥≪1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$t_\parallel /t_\perp \ll 1$$\end{document}). The impact of the dimensional crossover as the system is tuned away from a set of disconnected 2D layers, or traverses from a set of separate 1D chains to a regime where a fully isotropic 3D structure emerges is elucidated. Both numerical and analytic approaches are employed, (the latter in a form of series expansions involving t‖,t⊥\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$t_\parallel ,t_\perp$$\end{document} amplitudes) for internal energy, entropy, specific heat and isothermal compressibility. The theoretical outcome of the present study may be of interest to a number of scenarios in solid-state physics, where the relevant quasi-particles are bosonic-like, as well as might be applicable to the physics of cold bosons loaded in artificially engineered 3D optical lattices.