Learning a hierarchical representation of the yeast transcriptomic machinery using an autoencoder model

被引:0
|
作者
Lujia Chen
Chunhui Cai
Vicky Chen
Xinghua Lu
机构
[1] University of Pittsburgh,Department of Biomedical Informatics
来源
关键词
Yeast; Transcription; Gene expression; Transcriptomic machinery; Signal transduction; Deep learning; Deep hierarchical neural network; Unsupervised learning; Data mining;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Learning a hierarchical representation of the yeast transcriptomic machinery using an autoencoder model
    Chen, Lujia
    Cai, Chunhui
    Chen, Vicky
    Lu, Xinghua
    BMC BIOINFORMATICS, 2016, 17
  • [2] SHAPE RETRIEVAL USING DEEP AUTOENCODER LEARNING REPRESENTATION
    Xu, Guoqing
    Fang, Weiwei
    2016 13TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2016, : 227 - 230
  • [3] Learning Representation for fMRI Data Analysis using Autoencoder
    Kamonsantiroj, Suwatchai
    Charoenvorakiat, Parinya
    Pipanmaekaporn, Luepol
    PROCEEDINGS 2016 5TH IIAI INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS IIAI-AAI 2016, 2016, : 560 - 565
  • [4] A hierarchical autoencoder learning model for path prediction and abnormality detection
    Dotti, Dario
    Popa, Mirela
    Asteriadis, Stylianos
    PATTERN RECOGNITION LETTERS, 2020, 130 (130) : 216 - 224
  • [5] Acoustic Anomaly Detection of Machinery using Autoencoder based Deep Learning
    Chinnasamy, Mark Damien
    Sumbwanyambe, Mbuyu
    Hlalele, Tlotlollo Sidwell
    2024 32ND SOUTHERN AFRICAN UNIVERSITIES POWER ENGINEERING CONFERENCE, SAUPEC, 2024, : 212 - 217
  • [6] Representation Learning with Smooth Autoencoder
    Liang, Kongming
    Chang, Hong
    Cui, Zhen
    Shan, Shiguang
    Chen, Xilin
    COMPUTER VISION - ACCV 2014, PT II, 2015, 9004 : 72 - 86
  • [7] Sparse Representation Convolutional Autoencoder for Feature Learning of Vibration Signals and its Applications in Machinery Fault Diagnosis
    Miao, Mengqi
    Sun, Yuanhang
    Yu, Jianbo
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (12) : 13565 - 13575
  • [8] Machinery Fault Detection Using Autoencoder and Online Sequential Extreme Learning Machine
    Yang, Zhe
    Long, Jianyu
    Cai, Xiaoman
    Li, Jianheng
    Li, Chuan
    PROCEEDINGS OF 2021 7TH INTERNATIONAL CONFERENCE ON CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS (CMMNO), 2021, : 58 - 62
  • [9] Integrating a flexible representation machinery in a model of human concept learning
    Matsuka, Toshihiko
    Sakamoto, Yasuaki
    2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 3027 - 3033
  • [10] Bilateral discriminative autoencoder model orienting co-representation learning
    Liu, Zehao
    Wang, Hongjun
    Chen, Wei
    Wang, Luqing
    Li, Tianrui
    KNOWLEDGE-BASED SYSTEMS, 2022, 245