Coriolis effect on temporal decay rates of global solutions to the fractional Navier–Stokes equations

被引:0
|
作者
Jaewook Ahn
Junha Kim
Jihoon Lee
机构
[1] Dongguk University,Department of Mathematics
[2] Chung-Ang University,Department of Mathematics
来源
Mathematische Annalen | 2022年 / 383卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The incompressible fractional Navier–Stokes equations in the rotational framework is considered. We establish the global existence result and temporal decay estimate for a unique smooth solution when the speed of rotation is sufficiently rapid. It is found that the strong rotational effect enhances the temporal decay rate of a certain norm of the velocity.
引用
收藏
页码:259 / 289
页数:30
相关论文
共 50 条
  • [1] Coriolis effect on temporal decay rates of global solutions to the fractional Navier-Stokes equations
    Ahn, Jaewook
    Kim, Junha
    Lee, Jihoon
    MATHEMATISCHE ANNALEN, 2022, 383 (1-2) : 259 - 289
  • [2] The decay rates of strong solutions for Navier-Stokes equations
    He, C
    Hsiao, L
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 268 (02) : 417 - 425
  • [3] Algebraic decay rates for 3D Navier-Stokes and Navier-Stokes-Coriolis equations in H•1/2
    Ikeda, Masahiro
    Kosloff, Leonardo
    Niche, Cesar J.
    Planas, Gabriela
    JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (03)
  • [4] On decay of solutions to the Navier-Stokes equations
    Schonbek, ME
    APPLIED NONLINEAR ANALYSIS, 1999, : 505 - 512
  • [5] Temporal and spatial decay rates of Navier-Stokes solutions in exterior domains
    Bae, Hyeong-Ohk
    Jin, Bum Ja
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (03) : 547 - 567
  • [6] Temporal decay for the generalized Navier-Stokes equations
    Zhao, Jihong
    Zheng, Lifei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 141 : 191 - 210
  • [7] Decay of Solutions to the Linearized Free Surface Navier–Stokes Equations with Fractional Boundary Operators
    Ian Tice
    Samuel Zbarsky
    Journal of Mathematical Fluid Mechanics, 2020, 22
  • [8] Decay Rates for Strong Solutions to the Compressible Navier–Stokes Equations without Heat Conductivity
    Weilong Li
    Wenjun Wang
    Yinghui Wang
    Lei Yao
    Journal of Mathematical Fluid Mechanics, 2021, 23
  • [9] Global attractor for the Navier–Stokes equations with fractional deconvolution
    Davide Catania
    Alessandro Morando
    Paola Trebeschi
    Nonlinear Differential Equations and Applications NoDEA, 2015, 22 : 811 - 848