On a Homogeneous Integral Equation with Two Kernels

被引:0
|
作者
L. G. Arabadzhyan
S. A. Khachatryan
机构
[1] Institute of Mathematics of Armenian NAS,
[2] Armenian State Pedagogical University,undefined
关键词
Homogeneous integral equation; kernel of equation; the asymptotic of solution;
D O I
暂无
中图分类号
学科分类号
摘要
The present paper is devoted to the finding conditions of nontrivial (non-zero) solvability of some classes of equations of the form S(x)=∫0∞T1(x−t)S(t)dt+∫−∞0T2(x−t)S(t)dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\left( x \right) = \int_0^\infty {{T_1}\left( {x - t} \right)S\left( t \right)} dt + \int_{ - \infty }^0 {{T_2}\left( {x - t} \right)S\left( t \right)} dt$$\end{document} , x ∈ R, with respect to unknown function S. The asymptotic behavior of the solution S is also studied.
引用
收藏
页码:41 / 46
页数:5
相关论文
共 50 条