Adsorptive removal of arsenic from real sample of polluted water using magnetic GO/ZnFe2O4 nanocomposite and ZnFe2O4 nanospinel

被引:0
|
作者
S. A. Hosseini
A. R. Abbasian
O. Gholipoor
S. Ranjan
N. Dasgupta
机构
[1] Urmia University,Department of Applied Chemistry
[2] University of Sistan and Baluchestan,Department of Materials Engineering, Faculty of Engineering
[3] University of Johannesburg,Faculty of Engineering and the Built Environment
关键词
Arsenic removal; Magnetic nanocomposite; Graphene oxide; RSM; Adsorption;
D O I
暂无
中图分类号
学科分类号
摘要
Developing affordable and efficient materials for the removal of arsenic from drinking water is crucial for human and environmental safety. In the present study, the adsorptive performance of magnetic GO/ZnFe2O4 nanocomposite and ZnFe2O4 nanospinel for arsenic removal from aqueous water was analyzed. The adsorbents were characterized using Fourier-transform infrared spectroscopy, X-ray powder diffraction, transmission electron microscopy, selected area electron diffraction and vibrating sample magnetometer. The conditions were optimized by response surface methodology (RSM) by considering the main factors as adsorption time, arsenic concentration, dose of adsorbent and pH. The optimum condition for the removal of arsenic was observed at pH 9.76, 30 min of contact time, 13.4 mg L−1 of initial arsenic concentration and 0.048 g of adsorbent dosage. The predicted arsenic removal percent under optimized conditions was noted as 98%; on the other hand, the experimental values at optimized conditions were observed as 96%. The Pareto analysis predicted that pH of the polluted water is the major factor in adsorptive arsenic removal and the relative importance of the process factors was found in the following order: pH > arsenic concentration > contact time > adsorbent dosage. Thus, introduced compositions form a promising material for the decontamination of polluted water or using in environmental remediation programs.
引用
收藏
页码:7455 / 7466
页数:11
相关论文
共 50 条
  • [1] Adsorptive removal of arsenic from real sample of polluted water using magnetic GO/ZnFe2O4 nanocomposite and ZnFe2O4 nanospinel
    Hosseini, S. A.
    Abbasian, A. R.
    Gholipoor, O.
    Ranjan, S.
    Dasgupta, N.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2019, 16 (11) : 7455 - 7466
  • [2] Magnetic properties of ZnFe2O4 and In-doped ZnFe2O4 nanoparticles
    Maletin, M.
    Moshopoulou, E. G.
    Srdic, V. V.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2008, 205 (08): : 1831 - 1834
  • [3] MAGNETIC STATE OF ZNFE2O4
    CHUKALKIN, YG
    SHTIRTS, VR
    FIZIKA TVERDOGO TELA, 1988, 30 (10): : 2919 - 2923
  • [4] Magnetic Structure of ZnFe2O4
    Kremenovic, Aleksandar
    Vulic, Predrag
    Antic, Bratislav
    Bozin, Emil S.
    Blanusa, Jovan
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2009, 65 : S218 - S218
  • [5] Optical and magnetic properties of ZnO/ZnFe2O4 nanocomposite
    Zamiri, Reza
    Salehizadeh, S. A.
    Ahangar, Hossein Abbastabar
    Shabani, Mehdi
    Rebelo, Avito
    Kumar, J. Suresh
    Soares, M. J.
    Valente, M. A.
    Ferreira, J. M. F.
    MATERIALS CHEMISTRY AND PHYSICS, 2017, 192 : 330 - 338
  • [6] Magnetic Properties and Adsorptive Performance of ZnFe2O4/BC Nanocomposites
    Li Danping
    Han Yanbing
    Wang Panfeng
    Zhang Beibei
    Jin Hongxiao
    Xu Jingcai
    Wu Weixiang
    Wang Xinqing
    Ge Hongliang
    RARE METAL MATERIALS AND ENGINEERING, 2016, 45 : 350 - 353
  • [7] Magnetic properties of ZnFe2O4 nanoparticles
    Guskos, Niko
    Glenis, Spiros
    Typek, Janusz
    Zolnierkiewicz, Grzegorz
    Berczynski, Pawel
    Wardal, Kamil
    Guskos, Aleksander
    Sibera, Daniel
    Moszynski, Dariusz
    Lojkowski, Witold
    Narkiewicz, Urszula
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2012, 10 (02): : 470 - 477
  • [8] Magnetic properties of the ZnFe2O4 spinel
    Schiessl, W
    Potzel, W
    Karzel, H
    Steiner, M
    Kalvius, GM
    Martin, A
    Krause, MK
    Halevy, I
    Gal, J
    Schafer, W
    Will, G
    Hillberg, M
    Wappling, R
    PHYSICAL REVIEW B, 1996, 53 (14) : 9143 - 9152
  • [9] ZnFe2O4 nanoparticles and a clay encapsulated ZnFe2O4 nanocomposite: synthesis strategy, structural characteristics and the adsorption of dye pollutants in water
    Tadjarodi, Azadeh
    Imani, Mina
    Salehi, Mohammad
    RSC ADVANCES, 2015, 5 (69) : 56145 - 56156
  • [10] Magnetically separable ZnFe2O4, Fe2O3/ZnFe2O4 and ZnO/ZnFe2O4 hollow nanospheres with enhanced visible photocatalytic properties
    Li, Junqi
    Liu, Zhenxing
    Zhu, Zhenfeng
    RSC ADVANCES, 2014, 4 (93) : 51302 - 51308