Infinitely many solutions for the discrete Schrödinger equations with a nonlocal term

被引:0
|
作者
Qilin Xie
Huafeng Xiao
机构
[1] Guangdong University of Technology,School of Mathematics and Statistics
[2] Guangzhou University,School of Mathematics and Information Science
来源
关键词
Solutions; Discrete Schrödinger equations; Kirchhoff type;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we consider the following discrete Schrödinger equations −(a+b∑k∈Z|Δuk−1|2)Δ2uk−1+Vkuk=fk(uk)k∈Z,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ - \biggl(a+b\sum_{k\in \mathbf{Z}} \vert \Delta u_{k-1} \vert ^{2} \biggr) \Delta ^{2} u_{k-1}+ V_{k}u_{k}=f_{k}(u_{k}) \quad k\in \mathbf{Z}, $$\end{document} where a, b are two positive constants and V={Vk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V=\{V_{k}\}$\end{document} is a positive potential. Δuk−1=uk−uk−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta u_{k-1}=u_{k}-u_{k-1}$\end{document} and Δ2=Δ(Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta ^{2}=\Delta (\Delta )$\end{document} is the one-dimensional discrete Laplacian operator. Infinitely many high-energy solutions are obtained by the Symmetric Mountain Pass Theorem when the nonlinearities {fk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{f_{k}\}$\end{document} satisfy 4-superlinear growth conditions. Moreover, if the nonlinearities are sublinear at infinity, we obtain infinitely many small solutions by the new version of the Symmetric Mountain Pass Theorem of Kajikiya.
引用
收藏
相关论文
共 50 条