Soliton pulse compression in air-core photonic band-gap fibre

被引:0
|
作者
Pranami Sarma
Devika Phukan
Anurup Gohain Barua
机构
[1] Royal Global University,Department of Physics
[2] Gauhati University,Department of Physics
来源
Pramana | / 97卷
关键词
Soliton; air-core photonic band-gap fibre; dispersion compensating fibre; pulse energy; conventional fibre; 42.81.Dp; 42.81.Qb; 42.82.Et;
D O I
暂无
中图分类号
学科分类号
摘要
We report the study on pulse compression using air-core photonic band-gap fibre filled with air. The distortion of the output pulse is minimised using a distortion compensating fibre (DCF) for different input and output pulse energies at different values of atomic gas pressure. In the present work, 110 m long DCF was used and the pulses from a picosecond/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${/}$$\end{document}femtosecond pulse were linearly stretched and then recompressed in 12 m of the air-core fibre. With the band-pass filter, the output pulses were as short as 1.2 ps. The peak power obtained was 100 W with the use of the filter. The output peak power was generated using a filter by simulation and the dispersion characterisation shows that with increasing order of the input pulse, dispersion also changes in the output pulse. The simulation is done by finite difference time domain method in a soliton pulse.
引用
下载
收藏
相关论文
共 50 条
  • [1] Soliton pulse compression in air-core photonic band-gap fibre
    Sarma, Pranami
    Phukan, Devika
    Barua, Anurup Gohain
    PRAMANA-JOURNAL OF PHYSICS, 2023, 97 (03):
  • [2] Soliton pulse compression in photonic band-gap fibers.
    Ouzounov, DG
    Hensley, CJ
    Gaeta, AL
    Venkateraman, N
    Gallagher, MT
    Koch, KW
    OPTICS EXPRESS, 2005, 13 (16) : 6153 - 6159
  • [3] Surface modes in air-core photonic band-gap fibers
    West, JA
    Smith, CM
    Borrelli, NF
    Allan, DC
    Koch, KW
    OPTICS EXPRESS, 2004, 12 (08): : 1485 - 1496
  • [4] Surface modes and loss in air-core photonic band-gap fibers
    Allan, DC
    Borrelli, NF
    Gallagher, MT
    Müller, D
    Smith, CM
    Venkataraman, N
    West, JA
    Zhang, PH
    Koch, KW
    PHOTONIC CRYSTAL MATERIALS AND DEVICES, 2003, 5000 : 161 - 174
  • [5] Air-core photonic band-gap fibers: the impact of surface modes
    Saitoh, K
    Mortensen, NA
    Koshiba, M
    OPTICS EXPRESS, 2004, 12 (03): : 394 - 400
  • [6] Highly birefringent air-core photonic band-gap fiber free of surface modes
    Yu, Xiujuan
    Zhang, Min
    Liao, Yanbiao
    APOS: 2008 1ST ASIA-PACIFIC OPTICAL FIBER SENSORS CONFERENCE, 2008, : 152 - 155
  • [7] Reduced thermal sensitivity of hybrid air-core photonic band-gap fiber ring resonator
    Feng L.-S.
    Wang K.
    Jiao H.-C.
    Wang J.-J.
    Liu D.-N.
    Yang Z.-H.
    Optoelectronics Letters, 2018, 14 (1) : 17 - 20
  • [8] Reduced thermal sensitivity of hybrid air-core photonic band-gap fiber ring resonator
    冯丽爽
    王锴
    焦洪臣
    王俊杰
    刘丹妮
    杨照华
    Optoelectronics Letters, 2018, 14 (01) : 17 - 20
  • [9] Temperature dependence of beat-length and confinement loss in an air-core photonic band-gap fiber
    Xu, Zhenlong
    Li, Xuyou
    Hong, Yong
    Liu, Pan
    Yang, Hanrui
    Ling, Weiwei
    OPTICS COMMUNICATIONS, 2016, 366 : 38 - 44
  • [10] Chirped pulse Raman amplification with compression in air-core photonic bandgap fiber
    de Matos, CJS
    Taylor, JR
    OPTICS EXPRESS, 2005, 13 (08): : 2828 - 2834