An integrated feature ranking and selection framework for ADHD characterization

被引:11
|
作者
Xiao C. [1 ]
Bledsoe J. [1 ]
Wang S. [2 ]
Chaovalitwongse W.A. [1 ]
Mehta S. [1 ]
Semrud-Clikeman M. [3 ]
Grabowski T. [1 ]
机构
[1] University of Washington, Seattle, WA
[2] University of Texas, Arlington, Arlington
[3] University of Minnesota, Minneapolis
关键词
Attention Deficit Hyperactivity Disorder; Feature Selection; Mutual Information; Anterior Cingulate Cortex; Adaptive Lasso;
D O I
10.1007/s40708-016-0047-1
中图分类号
学科分类号
摘要
Today, diagnosis of attention deficit hyperactivity disorder (ADHD) still primarily relies on a series of subjective evaluations that highly rely on a doctor’s experiences and intuitions from diagnostic interviews and observed behavior measures. An accurate and objective diagnosis of ADHD is still a challenge and leaves much to be desired. Many children and adults are inappropriately labeled with ADHD conditions, whereas many are left undiagnosed and untreated. Recent advances in neuroimaging studies have enabled us to search for both structural (e.g., cortical thickness, brain volume) and functional (functional connectivity) abnormalities that can potentially be used as new biomarkers of ADHD. However, structural and functional characteristics of neuroimaging data, especially magnetic resonance imaging (MRI), usually generate a large number of features. With a limited sample size, traditional machine learning techniques can be problematic to discover the true characteristic features of ADHD due to the significant issues of overfitting, computational burden, and interpretability of the model. There is an urgent need of efficient approaches to identify meaningful discriminative variables from a higher dimensional feature space when sample size is small compared with the number of features. To tackle this problem, this paper proposes a novel integrated feature ranking and selection framework that utilizes normalized brain cortical thickness features extracted from MRI data to discriminate ADHD subjects against healthy controls. The proposed framework combines information theoretic criteria and the least absolute shrinkage and selection operator (Lasso) method into a two-step feature selection process which is capable of selecting a sparse model while preserving the most informative features. The experimental results showed that the proposed framework generated the highest/comparable ADHD prediction accuracy compared with the state-of-the-art feature selection approaches with minimum number of features in the final model. The selected regions of interest in our model were consistent with recent brain–behavior studies of ADHD development, and thus confirmed the validity of the selected features by the proposed approach. © 2016, The Author(s).
引用
收藏
页码:145 / 155
页数:10
相关论文
共 50 条
  • [1] Wrapper for ranking feature selection
    Ruiz, R
    Aguilar-Ruiz, JS
    Riquelme, JC
    INTELLIGENT DAA ENGINEERING AND AUTOMATED LEARNING IDEAL 2004, PROCEEDINGS, 2004, 3177 : 384 - 389
  • [2] Ranking a random feature for variable and feature selection
    Stoppiglia, Hervé
    Dreyfus, Gérard
    Dubois, Rémi
    Oussar, Yacine
    Journal of Machine Learning Research, 2003, 3 : 1399 - 1414
  • [3] ADHD CLASSIFICATION WITHIN AND CROSS COHORT USING AN ENSEMBLED FEATURE SELECTION FRAMEWORK
    Yao, Dongren
    Sun, Hailun
    Guo, Xiaojie
    Calhoun, Vince D.
    Sun, Li
    Sui, Jing
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1265 - 1269
  • [4] A Stratified Feature Ranking Method for Supervised Feature Selection
    Chen, Renjie
    Chen, Xiaojun
    Yuan, Guowen
    Sun, Wenya
    Wu, Qingyao
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 8059 - 8060
  • [5] A Feature Selection Method for Classification of ADHD
    Miao, Bo
    Zhang, Yulin
    2017 4TH INTERNATIONAL CONFERENCE ON INFORMATION, CYBERNETICS AND COMPUTATIONAL SOCIAL SYSTEMS (ICCSS), 2017, : 21 - 25
  • [6] A feature selection method with feature ranking using genetic programming
    Liu, Guopeng
    Ma, Jianbin
    Hu, Tongle
    Gao, Xiaoying
    CONNECTION SCIENCE, 2022, 34 (01) : 1146 - 1168
  • [7] Feature subset selection and feature ranking for multivariate time series
    Yoon, H
    Yang, KY
    Shahabi, C
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (09) : 1186 - 1198
  • [8] An Adaptive Multiple Feature Subset Method for Feature Ranking and Selection
    Chang, Fu
    Chen, Jen-Cheng
    INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI 2010), 2010, : 255 - 262
  • [9] Novel Feature Ranking Criteria for Interval Valued Feature Selection
    Guru, D. S.
    Kumar, N. Vinay
    2016 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2016, : 149 - 155
  • [10] Feature ranking based consensus clustering for feature subset selection
    Rani, D. Sandhya
    Rani, T. Sobha
    Bhavani, S. Durga
    Krishna, G. Bala
    APPLIED INTELLIGENCE, 2024, 54 (17-18) : 8154 - 8169