Exponential sums over primes with multiplicative coefficients

被引:0
|
作者
Olivier Ramaré
G. K. Viswanadham
机构
[1] Aix Marseille Université,CNRS/Institut de Mathématiques de Marseille
[2] U.M.R. 7373,undefined
[3] IISER Berhampur,undefined
来源
Mathematische Zeitschrift | 2023年 / 304卷
关键词
Exponential sums; Bilinear decomposition; Fourier coefficients of cusp forms; 11L07; 11N13 (11L20);
D O I
暂无
中图分类号
学科分类号
摘要
We consider exponential sums of the form ∑X<p≤2Xf(p)(logp)e(pα),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sum _{X< p \le 2X}f(p)(\log p) e(p\alpha ), \end{aligned}$$\end{document}where the sum runs over the prime numbers p∈(X,2X]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (X, 2X]$$\end{document} and f is a multiplicative function satisfying certain growth conditions. As a consequence of our result, we consider the coefficients (aπ(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(a_\pi (n))$$\end{document} of the standard L-function L(s,π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(s,\pi )$$\end{document} of a cuspidal representation π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} of GL(d) that satisfies the Ramanujan–Petersson conjecture as well as an estimate of the form maxα∈R|∑n≤Xaπ(n)e(nα)|≤Xη\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max _{\alpha \in \mathbb {R}}|\sum _{\begin{array}{c} n\le X \end{array}} a_\pi (n) e(n\alpha )|\le X^\eta $$\end{document} for some η<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta <1$$\end{document}. For such a form, we get that ∑X<p≤2Xaπ(p)(logp)e(pα)≪qφ(q)X,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sum _{X<p\le 2X} a_\pi (p)(\log p) e(p\alpha )\ll \frac{\sqrt{q}}{\varphi (q)}X, \end{aligned}$$\end{document}where α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is a real number such that α-aq≪X-1+1-η120\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| \alpha -\frac{a}{q}\right| \ll X^{-1+\frac{1-\eta }{120}}$$\end{document} for some q≤X(1-η)/15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\le X^{(1-\eta )/15}$$\end{document}. Under stronger restrictions and the same conditions on α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and a/q, we also prove that ∑X<ℓ≤2Xaπ(ℓ)μ(ℓ)e(pα)≪X/q.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sum _{X<\ell \le 2X} a_\pi (\ell )\mu (\ell ) e(p\alpha )\ll X/\sqrt{q}. \end{aligned}$$\end{document}
引用
收藏
相关论文
共 50 条