Singularity and Slow Convergence of the EM algorithm for Gaussian Mixtures

被引:0
|
作者
Hyeyoung Park
Tomoko Ozeki
机构
[1] Kyungpook National University,School of Electrical Engineering and Computer Science
[2] Tokai University,Department of Human & Information Science
来源
Neural Processing Letters | 2009年 / 29卷
关键词
EM algorithm; Gradient descent learning; Learning dynamics; Singularity; Slow convergence;
D O I
暂无
中图分类号
学科分类号
摘要
Singularities in the parameter spaces of hierarchical learning machines are known to be a main cause of slow convergence of gradient descent learning. The EM algorithm, which is another learning algorithm giving a maximum likelihood estimator, is also suffering from its slow convergence, which often appears when the component overlap is large. We analyze the dynamics of the EM algorithm for Gaussian mixtures around singularities and show that there exists a slow manifold caused by a singular structure, which is closely related to the slow convergence of the EM algorithm. We also conduct numerical simulations to confirm the theoretical analysis. Through the simulations, we compare the dynamics of the EM algorithm with that of the gradient descent algorithm, and show that their slow dynamics are caused by the same singular structure, and thus they have the same behaviors around singularities.
引用
收藏
页码:45 / 59
页数:14
相关论文
共 50 条