Computer modeling of granite magma diapirism in the Earth’s crust

被引:0
|
作者
O. P. Polyansky
S. N. Korobeynikov
A. V. Babichev
V. V. Reverdatto
V. G. Sverdlova
机构
[1] Russian Academy of Sciences,Sobolev Institute of Geology and Mineralogy, Siberian Branch
[2] Russian Academy of Sciences,Lavrent’ev Institute of Hydrodynamics, Siberian Branch
[3] Novosibirsk State University,undefined
来源
Doklady Earth Sciences | 2009年 / 429卷
关键词
Partial Melting; Lower Crust; DOKLADY Earth Science; Granite Gneiss; Conductive Heating;
D O I
暂无
中图分类号
学科分类号
摘要
A new point of view describing processes of partial melting and development of gravitational instability in a thickening crust with increased thickness of the granite layer is suggested. Numeral experiments support the following main conclusions. The critical volume of partially melted material should be formed for the beginning of flotation in a gravitational field. Due to model estimations, the height of the melting area in the granite crust should be not less than 6–7 km. A mushroom-shaped form of the floating body was observed in all models regardless of the thermal source size (fixed or variable width): the high temperature channel (magma leader) and head body of the diapir are formed. The height of diapir floating depends on rheological features of the surrounding crust: 10 times increase in the yield strength (from 1 to 10 MPa) while temperature decrease confines the possible level of rising to a depth of 15–16 km. An elevation of about 750 m is formed in the day surface relief above the axis part of the diapir.
引用
收藏
页码:1380 / 1384
页数:4
相关论文
共 50 条
  • [1] Computer Modeling of Granite Magma Diapirism in the Earth's Crust
    Polyansky, O. P.
    Korobeynikov, S. N.
    Babichev, A. V.
    Reverdatto, V. V.
    Sverdlova, V. G.
    DOKLADY EARTH SCIENCES, 2009, 429 (01) : 1380 - 1384
  • [2] Computer modeling of granite gneiss diapirism in the Earth's crust: Controlling factors, duration, and temperature regime
    Polyansky, O. P.
    Babichev, A. V.
    Korobeynikov, S. N.
    Reverdatto, V. V.
    PETROLOGY, 2010, 18 (04) : 432 - 446
  • [3] Computer modeling of granite gneiss diapirism in the Earth’s crust: Controlling factors, duration, and temperature regime
    O. P. Polyansky
    A. V. Babichev
    S. N. Korobeynikov
    V. V. Reverdatto
    Petrology, 2010, 18 : 432 - 446
  • [4] Granite magma formation, transport and emplacement in the Earth's crust
    Petford, N
    Cruden, AR
    McCaffrey, KJW
    Vigneresse, JL
    NATURE, 2000, 408 (6813) : 669 - 673
  • [5] Granite magma formation, transport and emplacement in the Earth's crust
    N. Petford
    A. R. Cruden
    K. J. W. McCaffrey
    J.-L. Vigneresse
    Nature, 2000, 408 : 669 - 673
  • [6] Silicic magma reservoirs in the Earth's crust
    Bachmann, Olivier
    Huber, Christian
    AMERICAN MINERALOGIST, 2016, 101 (11) : 2377 - 2404
  • [7] Computer model of granite-gneiss diapirism
    Polyansky, O. P.
    Babichev, A. V.
    Korobeinikov, S. N.
    Reverdatto, V. V.
    Sverdlova, V. G.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2009, 73 (13) : A1041 - A1041
  • [8] Zircons reveal magma fluxes in the Earth's crust
    Caricchi, Luca
    Simpson, Guy
    Schaltegger, Urs
    NATURE, 2014, 511 (7510) : 457 - +
  • [9] Zircons reveal magma fluxes in the Earth’s crust
    Luca Caricchi
    Guy Simpson
    Urs Schaltegger
    Nature, 2014, 511 : 457 - 461
  • [10] Chemical differentiation, cold storage and remobilization of magma in the Earth’s crust
    M. D. Jackson
    J. Blundy
    R. S. J. Sparks
    Nature, 2018, 564 : 405 - 409