Constructions of negabent functions over finite fields

被引:0
|
作者
Yue Zhou
Longjiang Qu
机构
[1] National University of Defense Technology,College of Science
[2] Otto-von-Guericke University,Faculty of Mathematics
来源
关键词
Negabent functions; Bent functions; Finite fields; Relative difference sets; Projective polynomials; 05B10; 11T06; 06E30; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
Bent functions are actively investigated for their various applications in cryptography, coding theory and combinatorial design. As one of their generalizations, negabent functions are also quite useful, and they are originally defined via nega-Hadamard transforms for boolean functions. In this paper, we look at another equivalent definition of them. It allows us to investigate negabent functions f on F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2^{n}}$\end{document}, which can be written as a composition of a univariate polynomial over F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2^{n}}$\end{document} and the trace mapping from F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2^{n}}$\end{document} to F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2}$\end{document}. In particular, when this polynomial is a monomial, we call f a monomial negabent function. Families of quadratic and cubic monomial negabent functions are constructed, together with several sporadic examples. To obtain more interesting negabent functions in special forms, we also look at certain negabent polynomials. We obtain several families of cubic negabent functions by using the theory of projective polynomials over finite fields.
引用
收藏
页码:165 / 180
页数:15
相关论文
共 50 条
  • [1] Constructions of negabent functions over finite fields
    Zhou, Yue
    Qu, Longjiang
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2017, 9 (02): : 165 - 180
  • [2] Several classes of negabent functions over finite fields
    Gaofei Wu
    Nian Li
    Yuqing Zhang
    Xuefeng Liu
    Science China Information Sciences, 2018, 61
  • [3] Several classes of negabent functions over finite fields
    Gaofei WU
    Nian LI
    Yuqing ZHANG
    Xuefeng LIU
    Science China(Information Sciences), 2018, 61 (03) : 217 - 219
  • [4] Several classes of negabent functions over finite fields
    Wu, Gaofei
    Li, Nian
    Zhang, Yuqing
    Liu, Xuefeng
    SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (03)
  • [5] Constructions of Resilient Functions Over Finite Fields
    Zhang Jie
    Liu Zhenhua
    Wen Qiaoyan
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON IMAGE ANALYSIS AND SIGNAL PROCESSING, 2009, : 317 - +
  • [6] Constructions of quadratic bent functions over finite fields
    Zhang, Feng-Rong
    Hu, Yu-Pu
    Xie, Min
    Gao, Jun-Tao
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2010, 33 (03): : 52 - 56
  • [7] Constructions of Involutions Over Finite Fields
    Zheng, Dabin
    Yuan, Mu
    Li, Nian
    Hu, Lei
    Zeng, Xiangyong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (12) : 7876 - 7883
  • [8] Secondary constructions of (non)weakly regular plateaued functions over finite fields
    Mesnager, Sihem
    Ozbudak, Ferruh
    Sinak, Ahmet
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (05) : 2295 - 2306
  • [9] New constructions of involutions over finite fields
    Tailin Niu
    Kangquan Li
    Longjiang Qu
    Qiang Wang
    Cryptography and Communications, 2020, 12 : 165 - 185
  • [10] CONSTRUCTIONS OF SUBSYSTEM CODES OVER FINITE FIELDS
    Aly, Salah A.
    Klappenecker, Andreas
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (05) : 891 - 912