Validation of Artificial Intelligence to Support the Automatic Coding of Patient Adverse Drug Reaction Reports, Using Nationwide Pharmacovigilance Data

被引:0
|
作者
Guillaume L. Martin
Julien Jouganous
Romain Savidan
Axel Bellec
Clément Goehrs
Mehdi Benkebil
Ghada Miremont
Joëlle Micallef
Francesco Salvo
Antoine Pariente
Louis Létinier
机构
[1] Synapse Medicine,Département de Santé Publique
[2] Sorbonne Université,undefined
[3] INSERM,undefined
[4] Institut Pierre Louis d’Epidémiologie et de Santé Publique,undefined
[5] AP-HP,undefined
[6] Hôpital Pitié Salpêtrière,undefined
[7] Surveillance Division,undefined
[8] Agence Nationale de Sécurité du Médicament et des Produits de Santé (ANSM),undefined
[9] University of Bordeaux,undefined
[10] INSERM,undefined
[11] BPH,undefined
[12] U1219,undefined
[13] Team Pharmacoepidemiology,undefined
[14] CHU de Bordeaux,undefined
[15] Pôle de Santé Publique,undefined
[16] Service de Pharmacologie Médicale,undefined
[17] Centre de Pharmacovigilance de Bordeaux,undefined
[18] CRPV Marseille Provence Corse,undefined
[19] Service Hospitalo-Universitaire de Pharmacologie Clinique et Pharmacovigilance,undefined
[20] Assistance Publique Hôpitaux de Marseille,undefined
[21] Aix Marseille Université,undefined
[22] Institut des Neurosciences des Systèmes,undefined
[23] INSERM 1106,undefined
来源
Drug Safety | 2022年 / 45卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:535 / 548
页数:13
相关论文
共 17 条
  • [1] Validation of Artificial Intelligence to Support the Automatic Coding of Patient Adverse Drug Reaction Reports, Using Nationwide Pharmacovigilance Data
    Martin, Guillaume L.
    Jouganous, Julien
    Savidan, Romain
    Bellec, Axel
    Goehrs, Clement
    Benkebil, Mehdi
    Miremont, Ghada
    Micallef, Joelle
    Salvo, Francesco
    Pariente, Antoine
    Letinier, Louis
    [J]. DRUG SAFETY, 2022, 45 (05) : 535 - 548
  • [2] Automated Drug Coding Using Artificial Intelligence: An Evaluation of WHODrug Koda on Adverse Event Reports
    Meldau, Eva-Lisa
    Bista, Shachi
    Rofors, Emma
    Gattepaille, Lucie M.
    [J]. DRUG SAFETY, 2022, 45 (05) : 549 - 561
  • [3] Automated Drug Coding Using Artificial Intelligence: An Evaluation of WHODrug Koda on Adverse Event Reports
    Eva-Lisa Meldau
    Shachi Bista
    Emma Rofors
    Lucie M. Gattepaille
    [J]. Drug Safety, 2022, 45 : 549 - 561
  • [4] Artificial Intelligence for Unstructured Healthcare Data: Application to Coding of Patient Reporting of Adverse Drug Reactions
    Letinier, Louis
    Jouganous, Julien
    Benkebil, Mehdi
    Bel-Letoile, Alicia
    Goehrs, Clement
    Singier, Allison
    Rouby, Franck
    Lacroix, Clemence
    Miremont, Ghada
    Micallef, Joelle
    Salvo, Francesco
    Pariente, Antoine
    [J]. CLINICAL PHARMACOLOGY & THERAPEUTICS, 2021, 110 (02) : 392 - 400
  • [5] Adverse Drug Reaction Mining in Pharmacovigilance Data Using Formal Concept Analysis
    Villerd, Jean
    Toussaint, Yannick
    Louet, Agnes Lillo-Le
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2010, 6323 : 386 - 401
  • [6] Drug_SNSMiner: standard pharmacovigilance pipeline for detection of adverse drug reaction using SNS data
    Seunghee Lee
    Hyekyung Woo
    Chung Chun Lee
    Gyeongmin Kim
    Jong-Yeup Kim
    Suehyun Lee
    [J]. Scientific Reports, 13
  • [7] Drug_SNSMiner: standard pharmacovigilance pipeline for detection of adverse drug reaction using SNS data
    Lee, Seunghee
    Woo, Hyekyung
    Lee, Chung Chun
    Kim, Gyeongmin
    Kim, Jong-Yeup
    Lee, Suehyun
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [8] A Real-World Data Driven Pharmacovigilance Investigation on Drug-Induced Arrhythmia Using KAERS DB, a Korean Nationwide Adverse Drug Reporting System
    Go, Chaerin
    Kim, Semi
    Kim, Yujin
    Sunwoo, Yongjun
    Eom, Sae Hyun
    Yun, Jiseong
    Shin, Sooyoung
    Choi, Yeo Jin
    Owczuk, Radoslaw
    [J]. PHARMACEUTICALS, 2023, 16 (11)
  • [9] Machine learning and semantic information for unstructured healthcare data: Comparison of methods through the automatic analysis of adverse drug reaction reports
    Letinier, Louis
    Jouganous, Julien
    Miremont, Ghada
    Bel-Letoile, Alicia
    Salvo, Francesco
    Rouby, Franck
    Micallef, Joelle
    Benkebil, Mehdi
    Pariente, Antoine
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2020, 29 : 328 - 328
  • [10] Application of explainable ensemble artificial intelligence model to categorization of hemodialysis-patient and treatment using nationwide-real-world data in Japan
    Kanda, Eiichiro
    Epureanu, Bogdan I.
    Adachi, Taiji
    Tsuruta, Yuki
    Kikuchi, Kan
    Kashihara, Naoki
    Abe, Masanori
    Masakane, Ikuto
    Nitta, Kosaku
    [J]. PLOS ONE, 2020, 15 (05):