More self-similar solutions of the nonlinear Schrödinger equation

被引:0
|
作者
Thierry Cazenave
Fred. B. Weissler
机构
[1] Analyse Numérique - URA CNRS 189,
[2] Université Pierre et Marie Curie,undefined
[3] 4,undefined
[4] place Jussieu,undefined
[5] F-75252 Paris Cedex 05,undefined
[6] France. E-mail: cazenave@ccr.jussieu.fr,undefined
[7] Laboratoire Analyse Géométrie et Applications - URA CNRS 742,undefined
[8] Institut Galilée - Université Paris XIII,undefined
[9] Avenue J.-B. Clément,undefined
[10] F-93430 Villetaneuse,undefined
[11] France. E-mail: weissler@math.univ-paris13.fr,undefined
关键词
Regularity Result;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the existence of self-similar solutions of the Schrödinger equation in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {\Bbb R}^N $\end{document} with the power nonlinearity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \gamma|u|^\alpha u $\end{document}. Existence is obtained for a range of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \alpha $\end{document} which differs from, but overlaps with, the range of powers considered in [4]. We also obtain regularity results for the self-similar solutions constructed in [4].
引用
收藏
页码:355 / 365
页数:10
相关论文
共 50 条
  • [1] Breathers of the nonlinear Schrödinger equation are coherent self-similar solutions
    Slunyaev, Alexey V.
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 474
  • [2] Self-similar solutions for the Schrödinger map equation
    Pierre Germain
    Jalal Shatah
    Chongchun Zeng
    Mathematische Zeitschrift, 2010, 264 : 697 - 707
  • [3] Exact solutions and self-similar symmetries of a nonlocal nonlinear Schrödinger equation
    Theodoros P. Horikis
    The European Physical Journal Plus, 135
  • [4] Self-similar solutions of equations of the nonlinear Schrödinger type
    V. G. Marikhin
    A. B. Shabat
    M. Boiti
    F. Pempinelli
    Journal of Experimental and Theoretical Physics, 2000, 90 : 553 - 561
  • [5] Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients
    Kruglov, V.I.
    Peacock, A.C.
    Harvey, J.D.
    Physical Review Letters, 2003, 90 (11) : 1 - 113902
  • [6] Computation of Self-similar Solution Profiles for the Nonlinear Schrödinger Equation
    C. Budd
    O. Koch
    E. Weinmüller
    Computing, 2006, 77 : 335 - 346
  • [7] On Self-Similar Solutions to a Kinetic Equation Arising in Weak Turbulence Theory for the Nonlinear Schrödinger Equation
    A. H. M. Kierkels
    J. J. L. Velázquez
    Journal of Statistical Physics, 2016, 163 : 1350 - 1393
  • [8] Self-similar solutions of Schrödinger flows
    Weiyue Ding
    Hongyan Tang
    Chongchun Zeng
    Calculus of Variations and Partial Differential Equations, 2009, 34
  • [9] Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations
    Thierry Cazenave
    Fred B. Weissler
    Mathematische Zeitschrift, 1998, 228 : 83 - 120
  • [10] More self-similar solutions of the nonlinear Schrodinger equation
    Cazenave, Thierry
    Weissler, Fred B.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1998, 5 (03): : 355 - 365