Nonlocal boundary value problems of fractional order at resonance with integral conditions

被引:0
|
作者
Hai-E Zhang
机构
[1] Tangshan University,Department of Basic Teaching
关键词
fractional differential equation; resonance; Riemann-Stieltjes integral; coincidence degree theory; 34B15;
D O I
暂无
中图分类号
学科分类号
摘要
Based upon the well-known coincidence degree theory of Mawhin, we obtain some new existence results for a class of nonlocal fractional boundary value problems at resonance given by {D0+αu(t)=f(t,u(t),D0+α−1u(t),D0+α−2u(t)),t∈(0,1),I0+3−αu(0)=u′(0)=0,D0+βu(1)=∫01D0+βu(t)dA(t),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} D_{0+}^{\alpha}u(t)=f(t,u(t),D_{0+}^{\alpha-1}u(t),D_{0+}^{\alpha-2}u(t)),\quad t\in(0,1), \\ I_{0^{+}}^{3-\alpha}u ( 0 ) =u' ( 0 ) =0,\quad\quad D_{0+} ^{\beta}u(1)=\int_{0}^{1}D_{0+}^{\beta}u(t)\,dA(t), \end{cases} $$\end{document} where α, β are real numbers with 2<α≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2<\alpha\leq3$\end{document}, 0<β≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\beta\leq1$\end{document}, D0+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D_{0+}^{\alpha}$\end{document} and I0+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I_{0+}^{\alpha}$\end{document} respectively denote Riemann-Liouville derivative and integral of order α, f:[0,1]×R3→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f:[0,1]\times\mathbb{R}^{3}\rightarrow\mathbb{R}$\end{document} satisfies the Carathéodory conditions, ∫01D0+βu(t)dA(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int_{0}^{1}D_{0+}^{\beta}u(t)\,dA(t)$\end{document} is a Riemann-Stieltjes integral with ∫01tα−β−1dA(t)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int_{0}^{1}t^{\alpha-\beta-1}\,dA(t)=1$\end{document}. We also present an example to demonstrate the application of the main results.
引用
收藏
相关论文
共 50 条
  • [1] Nonlocal boundary value problems of fractional order at resonance with integral conditions
    Zhang, Hai-E
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [2] Boundary value problems for Caputo fractional differential equations with nonlocal and fractional integral boundary conditions
    Choukri Derbazi
    Hadda Hammouche
    [J]. Arabian Journal of Mathematics, 2020, 9 : 531 - 544
  • [3] Boundary value problems for Caputo fractional differential equations with nonlocal and fractional integral boundary conditions
    Derbazi, Choukri
    Hammouche, Hadda
    [J]. ARABIAN JOURNAL OF MATHEMATICS, 2020, 9 (03) : 531 - 544
  • [4] MULTI-TERM FRACTIONAL-ORDER BOUNDARY-VALUE PROBLEMS WITH NONLOCAL INTEGRAL BOUNDARY CONDITIONS
    Alsaedi, Ahmed
    Alghamdi, Najla
    Agarwal, Ravi P.
    Ntouyas, Sotiris K.
    Ahmad, Bashir
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [5] Nonlocal fractional-order boundary value problems with generalized Riemann-Liouville integral boundary conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (07) : 1281 - 1296
  • [6] Boundary value problems for differential equations with fractional order and nonlocal conditions
    Benchohra, M.
    Hamani, S.
    Ntouyas, S. K.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) : 2391 - 2396
  • [7] Boundary Value Problems for Hilfer Fractional Differential Inclusions with Nonlocal Integral Boundary Conditions
    Wongcharoen, Athasit
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. MATHEMATICS, 2020, 8 (11) : 1 - 11
  • [8] Fractional-order boundary value problems with Katugampola fractional integral conditions
    Nazim I. Mahmudov
    Sedef Emin
    [J]. Advances in Difference Equations, 2018
  • [9] Fractional-order boundary value problems with Katugampola fractional integral conditions
    Mahmudov, Nazim I.
    Emin, Sedef
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [10] BOUNDARY VALUE PROBLEMS FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS AND INCLUSIONS WITH NONLOCAL AND FRACTIONAL INTEGRAL BOUNDARY CONDITIONS
    Ntouyas, Sotiris K.
    [J]. OPUSCULA MATHEMATICA, 2013, 33 (01) : 117 - 138