Based upon the well-known coincidence degree theory of Mawhin, we obtain some new existence results for a class of nonlocal fractional boundary value problems at resonance given by
{D0+αu(t)=f(t,u(t),D0+α−1u(t),D0+α−2u(t)),t∈(0,1),I0+3−αu(0)=u′(0)=0,D0+βu(1)=∫01D0+βu(t)dA(t),\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \textstyle\begin{cases} D_{0+}^{\alpha}u(t)=f(t,u(t),D_{0+}^{\alpha-1}u(t),D_{0+}^{\alpha-2}u(t)),\quad t\in(0,1), \\ I_{0^{+}}^{3-\alpha}u ( 0 ) =u' ( 0 ) =0,\quad\quad D_{0+} ^{\beta}u(1)=\int_{0}^{1}D_{0+}^{\beta}u(t)\,dA(t), \end{cases} $$\end{document} where α, β are real numbers with 2<α≤3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$2<\alpha\leq3$\end{document}, 0<β≤1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$0<\beta\leq1$\end{document}, D0+α\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$D_{0+}^{\alpha}$\end{document} and I0+α\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$I_{0+}^{\alpha}$\end{document} respectively denote Riemann-Liouville derivative and integral of order α, f:[0,1]×R3→R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$f:[0,1]\times\mathbb{R}^{3}\rightarrow\mathbb{R}$\end{document} satisfies the Carathéodory conditions, ∫01D0+βu(t)dA(t)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\int_{0}^{1}D_{0+}^{\beta}u(t)\,dA(t)$\end{document} is a Riemann-Stieltjes integral with ∫01tα−β−1dA(t)=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\int_{0}^{1}t^{\alpha-\beta-1}\,dA(t)=1$\end{document}. We also present an example to demonstrate the application of the main results.