Recurrent convolutional network for video-based smoke detection

被引:1
|
作者
Mengxia Yin
Congyan Lang
Zun Li
Songhe Feng
Tao Wang
机构
[1] Beijing Jiaotong University,
来源
关键词
Smoke detection; Motion context information; Deep convolution; RNNs;
D O I
暂无
中图分类号
学科分类号
摘要
Video-based smoke detection plays an important role in the fire detection community. Such interesting topic, however, always suffers from great challenge due to the large variances of smoke texture, shape and color in the real applications. To effectively exploiting the long-range motion context, we propose a novel video-based smoke detection method via Recurrent Neural Networks (RNNs). More concretely, the proposed method first captures the space and motion context information by using deep convolutional motion-space networks. Then a temporal pooling layer and RNNs are used to effectively train the smoke model. Finally, to promote further research and evaluation of video-based smoke models, we also construct a new large database of 3000 challenging smoke video clips that cover large variations in illuminance and weather conditions. Experimental results demonstrate that our proposed method is capable of achieving state-of-the-art performance on all public benchmarks.
引用
收藏
页码:237 / 256
页数:19
相关论文
共 50 条
  • [1] Recurrent convolutional network for video-based smoke detection
    Yin, Mengxia
    Lang, Congyan
    Li, Zun
    Feng, Songhe
    Wang, Tao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (01) : 237 - 256
  • [2] Recurrent Convolutional Network for Video-based Person Re-Identification
    McLaughlin, Niall
    del Rincon, Jesus Martinez
    Miller, Paul
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1325 - 1334
  • [3] Video Based Smoke and Flame Detection Using Convolutional Neural Network
    Son, GeumYoung
    Park, Jang-Sik
    Yoon, Byung-Woo
    Song, Jong-Gwan
    2018 14TH INTERNATIONAL CONFERENCE ON SIGNAL IMAGE TECHNOLOGY & INTERNET BASED SYSTEMS (SITIS), 2018, : 365 - 368
  • [4] Convolutional Neural Network for Video Fire and Smoke Detection
    Frizzi, Sebastien
    Kaabi, Rabeb
    Bouchouicha, Moez
    Ginoux, Jean-Marc
    Moreau, Eric
    Fnaiech, Farhat
    PROCEEDINGS OF THE IECON 2016 - 42ND ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2016, : 877 - 882
  • [5] Video Smoke Detection Based on Gaussian Mixture Model and Convolutional Neural Network
    Li Peng
    Zhang Yan
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (21)
  • [6] Monocular Video-Based Trailer Coupler Detection using Multiplexer Convolutional Neural Network
    Atoum, Yousef
    Roth, Joseph
    Bliss, Michael
    Zhang, Wende
    Liu, Xiaoming
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5478 - 5486
  • [7] Smoke Detection on Video Sequences Using Convolutional and Recurrent Neural Networks
    Filonenko, Alexander
    Kurnianggoro, Laksono
    Jo, Kang-Hyun
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2017, PT II, 2017, 10449 : 558 - 566
  • [8] Video-Based Fire Detection with Saliency Detection and Convolutional Neural Networks
    Shi, Lifeng
    Long, Fei
    Lin, ChenHan
    Zhao, Yihan
    ADVANCES IN NEURAL NETWORKS, PT II, 2017, 10262 : 299 - 309
  • [9] Smoke Video Detection Algorithm Based on 3D Convolutional Neural Network
    Shi, Zhen
    Sun, Rui
    Huo, Mingge
    Proceedings of the 34th Chinese Control and Decision Conference, CCDC 2022, 2022, : 692 - 697
  • [10] A NOVEL VIDEO-BASED SMOKE DETECTION METHOD BASED ON COLOR INVARIANTS
    Besbes, O.
    Benazza-Benyahia, A.
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 1911 - 1915