Iron drives anabolic metabolism through active histone demethylation and mTORC1

被引:0
|
作者
Jason S. Shapiro
Hsiang-Chun Chang
Yuki Tatekoshi
Zibo Zhao
Zohra Sattar Waxali
Bong Jin Hong
Haimei Chen
Justin A. Geier
Elizabeth T. Bartom
Adam De Jesus
Farnaz K. Nejad
Amir Mahmoodzadeh
Tatsuya Sato
Lucia Ramos-Alonso
Antonia Maria Romero
Maria Teresa Martinez-Pastor
Shang-Chuan Jiang
Shiv K. Sah-Teli
Liming Li
David Bentrem
Gary Lopaschuk
Issam Ben-Sahra
Thomas V. O’Halloran
Ali Shilatifard
Sergi Puig
Joy Bergelson
Peppi Koivunen
Hossein Ardehali
机构
[1] Northwestern University,Feinberg Cardiovascular Research Institute
[2] Baylor College of Medicine,Department of Pediatrics
[3] Northwestern University Feinberg School of Medicine,Department of Biochemistry and Molecular Genetics
[4] Northwestern University School of Medicine,Simpson Querrey Center for Epigenetics
[5] Northwestern University,The Chemistry of Life Processes Institute, Department of Chemistry
[6] Michigan State University,Department of Microbiology & Molecular Genetics
[7] Sapporo Medical University School of Medicine,Department of Cellular Physiology and Signal Transduction
[8] Consejo Superior de Investigaciones Científicas,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos
[9] Universitat de València,Departamento de Bioquímica y Biología Molecular
[10] Viale delle Terme di Caracalla,Plant Production and Protection Division (NSP), Food and Agriculture Organization of the United Nations
[11] University of Oulu,Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell
[12] Northwestern University,Matrix Research
[13] University of Alberta,Robert H. Lurie Comprehensive Cancer Center
[14] New York University,Cardiovascular Research Centre, Mazankowski Alberta Heart Institute
来源
Nature Cell Biology | 2023年 / 25卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
All eukaryotic cells require a minimal iron threshold to sustain anabolic metabolism. However, the mechanisms by which cells sense iron to regulate anabolic processes are unclear. Here we report a previously undescribed eukaryotic pathway for iron sensing in which molecular iron is required to sustain active histone demethylation and maintain the expression of critical components of the pro-anabolic mTORC1 pathway. Specifically, we identify the iron-binding histone-demethylase KDM3B as an intrinsic iron sensor that regulates mTORC1 activity by demethylating H3K9me2 at enhancers of a high-affinity leucine transporter, LAT3, and RPTOR. By directly suppressing leucine availability and RAPTOR levels, iron deficiency supersedes other nutrient inputs into mTORC1. This process occurs in vivo and is not an indirect effect by canonical iron-utilizing pathways. Because ancestral eukaryotes share homologues of KDMs and mTORC1 core components, this pathway probably pre-dated the emergence of the other kingdom-specific nutrient sensors for mTORC1.
引用
收藏
页码:1478 / 1494
页数:16
相关论文
共 50 条
  • [1] Iron drives anabolic metabolism through active histone demethylation and mTORC1
    Shapiro, Jason S.
    Chang, Hsiang-Chun
    Tatekoshi, Yuki
    Zhao, Zibo
    Waxali, Zohra Sattar
    Hong, Bong Jin
    Chen, Haimei
    Geier, Justin A.
    Bartom, Elizabeth T.
    De Jesus, Adam
    Nejad, Farnaz K.
    Mahmoodzadeh, Amir
    Sato, Tatsuya
    Ramos-Alonso, Lucia
    Romero, Antonia Maria
    Martinez-Pastor, Maria Teresa
    Jiang, Shang-Chuan
    Sah-Teli, Shiv K.
    Li, Liming
    Bentrem, David
    Lopaschuk, Gary
    Ben-Sahra, Issam
    O'Halloran, Thomas V.
    Shilatifard, Ali
    Puig, Sergi
    Bergelson, Joy
    Koivunen, Peppi
    Ardehali, Hossein
    NATURE CELL BIOLOGY, 2023, 25 (10) : 1478 - +
  • [2] A new pathway links iron sensing with histone demethylation and regulation of mTORC1 activity
    Carney, Ellen F.
    NATURE REVIEWS NEPHROLOGY, 2023, 19 (12) : 753 - 753
  • [3] A new pathway links iron sensing with histone demethylation and regulation of mTORC1 activity
    Ellen F. Carney
    Nature Reviews Nephrology, 2023, 19 : 753 - 753
  • [4] mTORC1 beyond anabolic metabolism: Regulation of cell death
    Zhu, Jiajun
    Wang, Hua
    Jiang, Xuejun
    JOURNAL OF CELL BIOLOGY, 2022, 221 (12):
  • [5] mTORC1 drives granulomas
    Lucy Bird
    Nature Reviews Immunology, 2017, 17 (3) : 148 - 149
  • [6] Inhibition of mitochondrial folate metabolism drives differentiation through mTORC1 mediated purine sensing
    Martha M. Zarou
    Kevin M. Rattigan
    Daniele Sarnello
    Engy Shokry
    Amy Dawson
    Angela Ianniciello
    Karen Dunn
    Mhairi Copland
    David Sumpton
    Alexei Vazquez
    G. Vignir Helgason
    Nature Communications, 15
  • [7] Inhibition of mitochondrial folate metabolism drives differentiation through mTORC1 mediated purine sensing
    Zarou, Martha M.
    Rattigan, Kevin M.
    Sarnello, Daniele
    Shokry, Engy
    Dawson, Amy
    Ianniciello, Angela
    Dunn, Karen
    Copland, Mhairi
    Sumpton, David
    Vazquez, Alexei
    Helgason, G. Vignir
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [8] Oncogenic signaling upstream of mTORC1 drives lipogenesis and proliferation through SREBP
    Stéphane Ricoult
    Jessica Yecies
    Brendan Manning
    Cancer & Metabolism, 2 (Suppl 1)
  • [9] Oncogenic signaling upstream of mTORC1 drives lipogenesis and proliferation through SREBP
    Ricoult, Stephane
    Yecies, Jessica
    Manning, Brendan
    CANCER & METABOLISM, 2014, 2
  • [10] Sensing of RNA stress by mTORC1 drives autoinflammation
    Lee-Kirsch, Min Ae
    JOURNAL OF CLINICAL INVESTIGATION, 2022, 132 (02):