Transitivity and full transitivity for p-local modules

被引:0
|
作者
G. Hennecke
L. Strüngmann
机构
[1] Fachbereich 6,
[2] Mathematik,undefined
[3] Universität Essen,undefined
[4] 45117 Essen,undefined
[5] Germany,undefined
来源
Archiv der Mathematik | 2000年 / 74卷
关键词
Module Transitivity; Full Transitivity; Divisible Part;
D O I
暂无
中图分类号
学科分类号
摘要
A p-local module M is called (fully) transitive if for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $x,y\in M$\end{document} with UM(x) = UM(y) (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $U_M(x)\leqq U_M(y)$\end{document}) there exists an automorphism (endomorphism) of M which maps x onto y. In this paper we examine the relationship of these two notions in the case of p-local modules. We show that a module M is fully transitive if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $M\oplus M$\end{document} is transitive in the case where the divisible part of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $M/tM$\end{document} has rank at most one. Moreover, we show that for the same class of modules transitivity implies full transitivity if p > 2. This extends theorems of Files, Goldsmith and of Kaplansky for torsion p-local modules.
引用
收藏
页码:321 / 329
页数:8
相关论文
共 50 条